Data Detector: The history, the concept, and the needed adaptation for 802.3ca

Glen Kramer (Broadcom Ltd.)

History

- Data Detector was suggested in September 2003 (802.3ah) to eliminate the LaserControl signal from MAC Control to PMD, which 802.3 considered a layering violation.
- It underwent minor modifications in March 2007 (802.3av) to adapt it to 64b/66b line coding and stream-based FEC.
- It has a simple concept and provides an easy-tounderstand behavioral model to the implementers.

Illustration of the approach

September 12, 2003 4

Conceptual Diagram

- There are 6 stages in burst's "lifetime"
 - 1.Between bursts
 - 2.Turning laser on
 - 3. Sending preamble
 - 4. Sending delimiter
 - 5.Sending FECprotected data
 - 6.Turning laser off
- The stages always follow in the same order

Data Detector for 802.3ca

- There are no fundamental changes in burst composition in 802.3ca vs 802.3av. The changes are relatively minor and the existing Data Detector state diagram can be easily adapted to 802.3ca.
- What has changed:
 - 1. Burst preamble consists of three programmable patterns of programmable lengths.
 - 2. No need to resynchronize the scrambler (two sacrificial idle blocks at the front of every burst are gone)
 - 3. FEC Codeword size is different. Last codeword in a burst may be shortened.
 - 4. Line-coding block size is different (257b vs. 66b)
 - 5. Last 257b block in FEC payload includes the Codeword Delineation Marker (CDM)

Burst Composition

Functional Diagram

- INPUT_FIFO

 accumulates 4 66b
 blocks to get
 transcoded into one

 257b block
- OUTPUT_FIFO holds 257b blocks long enough for
 - a) the FEC Encoder to generate PARITY data
 - b) In the ONU, to turn the laser on and transmit sync pattern and burst delimiter.

Data Detector - Input Process

Input Process

- Receives a 66-bit every
 2.56 ns block from the
 Transmier/Encoder
 process
- Calls Transcode function on 4 66b blocks
- Calls Scramble function on some blocks
- Passes 257b blocks to FEC_Encode function
- Appends transcoded and scrambled blocks to the end of OUTPUT_FIFO

Data Detector - Output Process

Output Process

- Inserts 10 Parity blocks after every 56 payload blocks
- In the ONU,
 - GeneratesPMA_SIGNAL.request()to turn the laser on/off.
 - Inserts sync pattern,
 Burst Delimiter, and
 terminating sequence.
 - Handles shortened last FEC codeword.
- Passes a 257-bit block every 9.9685 ns to the GearBox
 - Output bit rate is 25.78125 Gb/s

OLT PCS State Diagrams

(ONU PCS State Diagrams are coming soon)

OLT Input Process State Diagram

- □ CLK_IN is the same as 25GMII clock TX_CLK25
- IndexIn counts the blocks received from Transmitter/ Encoder SD
 - Blocks 0-222: payload
 - Block 223: delimiter
 - Blocks 224-256: parity placeholders
- tx_coded < 65:0 > is a 66-bit vector received from Transmitter/Encoder process (see remein_3ca_1b_0118.pdf)
- tx_xcoded < 256:0 > is a transcoded 257-bit vector passed to OUTPUT_FIFO

Output Process State Diagram

- □ CLK_OUT is the rate of output of 257-bit blocks
 - One 257b sent out every 9.9685 ns
- PayloadBlockCount counts the payload blocks (from 0 to 56)
- ParityBlockCount counts the parity blocks (from 0 to 10)
- GetHead() returns the first element in OUTPUT_FIFO and removes it from the queue.
- tx_xcoded_out < 256:0 > is a 257-bit output vector to be passed to GearBox

Conclusion

- Proposed are simple-to-understand state diagrams for the OLT Data Detector.
 - Consists of Data Detector Input and Data Detector Output processes
 - Similar to how the DD is defined in 802.3ah and 802.3av.
- All manipulations related to burst framing and timing can be concentrated in a single state diagram (ONU Data Detector Output process).
- No need to develop any state diagrams for 256b/257b Transcoder, Scrambler, or FEC Encoder.
 - All these functions are integrated into DD Input process as function calls
 - Similar to how this is done with 64b/66b encoder in remein_3ca_1b_0118.pdf and in 802.3av.

Backup

Encoding options for FEC Delimiter

Input Data	S y n c	Block I	Payload								
Bit Position:	0 1	2									65
$D_0 D_1 D_2 D_3 / D_4 D_5 D_6 D_7$	01	D ₀	D ₁	D ₂	D_3		D ₄		D ₅	D ₆	D ₇
Control Block Formats:		Block Type Field			1					•	
C ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x1e	C ₀	C ₁	C_2	C	3	C ₄	C ₅	C ₆	C ₇
C ₀ C ₁ C ₂ C ₃ /O ₄ D ₅ D ₆ D ₇	10	0x2d	C ₀	C ₁	C_2	C;	3	04	D ₅	D ₆	D ₇
$C_0 C_1 C_2 C_3 / S_4 D_5 D_6 D_7$	10	0x33	C ₀	C ₁	c_2	C	3		D ₅	D ₆	D ₇
$O_0 D_1 D_2 D_3 / S_4 D_5 D_6 D_7$	10	0x66	D ₁	D ₂	D ₃		00		D ₅	D ₆	D ₇
O ₀ D ₁ D ₂ D ₃ /O ₄ D ₅ D ₆ D ₇	10	0x55	D ₁	D ₂	D ₃		00	04	D ₅	D ₆	D ₇
S ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	10	0x78	D ₁	D ₂	D ₃		D ₄		D ₅	D ₆	D ₇
O ₀ D ₁ D ₂ D ₃ /C ₄ C ₅ C ₆ C ₇	10	0x4b	D_1	D_2	D_3		00	C ₄	C ₅	C ₆	C ₇
$T_0 C_1 C_2 C_3/C_4 C_5 C_6 C_7$	10	0x87		C ₁	C ₂	C	3	C ₄	C ₅	C ₆	C ₇
D ₀ T ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x99	D ₀		C ₂	C	3	C ₄	C ₅	C ₆	C ₇
D ₀ D ₁ T ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0xaa	D ₀	D ₁		C;	3	C ₄	C ₅	C ₆	C ₇
$D_0 D_1 D_2 T_3 / C_4 C_5 C_6 C_7$	10	0xb4	D ₀	D ₁	D ₂			C	C ₅	C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ /T ₄ C ₅ C ₆ C ₇	10	0xcc	D ₀	D ₁	D ₂		D	3	C ₅	C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ /D ₄ T ₅ C ₆ C ₇	10	0xd2	D ₀	D ₁	D ₂		D	3	D ₄	C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ T ₆ C ₇	10	0xe1	D ₀	D ₁	D ₂		D	3	D ₄	D ₅	C ₇
$D_0 D_1 D_2 D_3 / D_4 D_5 D_6 T_7$	10	0xff	D ₀	D ₁	D ₂		D ₃		D ₄	D ₅	D ₆

Figure 49-7—64B/66B block formats