Why should be one by 50Gb/s in P802.3ca

Dekun Liu Huawei Technologies

Supporters

- Wangbo China Telecom
- ☐ Shao Yan China Unicom
- ☐ Guo Yong ZTE

Background

■In Berlin meeting, a joint contribution proposed to compare the solutions for 50G EPON, the main focus is on 2*25G vs 1*50G, which solution is the best way for 50G EPON.

Motion #6

The Task Force should analyze and compare the following solutions for 50G PON and choose the best one for 50G EPON: 1) Single wavelength TDM-PON with 50Gb/s line rate, 2) Two-wavelength TDM/WDM-PON with 25Gb/s line rate per lane.

The Task Force calls for contributions on these topics.

Moved: Dekun Liu Second: Liquan Yuan

For: 22 Against: 0 Abstain: 4 Procedural (> 50%) Motion Passed

■This contribution shows why it should be 1* 50G in P802.3ca.

Why should be 1X50G (1)

■ 1X50G is the future proof and has the cost advantage

https://www.eiseverywhere.com/file_uploads/c7e1ba72c398a54dac106dcc26 106781 9 BuildingtheNextGenerationAccessNetwork Eckard.pdf

- 1X50G has the cost advantage compared with 2X25G
- 1X50G can maintain the same OLT ports density with current 10G EPON, and has lower maintenance cost than multiple channel systems.
- Multiple channels can never lower down the cost per bit compared with single channel, while higher bit rate single channel can!
- PON is not likely to require more than what serial rates can deliver, PON system should try to reach the serial rate limitation with TDM first, and then do WDM

Why should be 1X50G (1)

- More cost effectiveness per bit than pervious PON (such as GPON, 10G PON) will be the driven force for next generation PON deployment, not the standard and technology
- 50G EPON should choose the solution with the lowest cost and based on the technology when it's volume deployed, rather than the solution can be defined in the quickest way

Keep your eyes on the prize

- Must keep 100G-EPON simple
- ☐ Must keep the cost low. Given the choice, always defer the cost to a later generation.
- ☐ If 100G-EPON technology fails, it won't be because of low performance. It will be because of high cost and/or being too late.

Rushed standard development

- Reliable technology
- **≠** Cost-efficient product
 - Fast time to market

kramer 3ca 1 0316

Why should be 1X50G (2)

□ Do 1X50G is a good convergence with ITU PON

Work item	Question	Status	Timing	Approval process	Subject / Title	Base text(s)	Editor(s)
G.hsp.req	Q2/15	Under study	2018-10	ААР	Higher Speed Passive Optical Networks: Requirements	<u>TD 154</u> <u>WP1-Annex</u> <u>B</u>	Dezhi Zhang, Kent McCammon
G.hsp.com TC	Q2/15	Under study	2019-06	ААР	Higher Speed Passive Optical Networks: Common Transmission Convergence layer	TD 154 WP1-Annex <u>C</u>	Yuanqiu Luo, Dan Geng, Tim Williams
G.hsp.50G pmd	Q2/15	Under study	2020-10	ААР	Higher Speed Passive Optical Networks: 50G PMD	TD 154 WP1-Annex D	Lei Wang, Dekun Liu

 ITU-T SG15 has approved the new project on 50G single channel PON systems in Feb 2018 plenary meeting in Geneva (no multiple channels on 25G)

	0 /4.5	Annex A	7 2040		
Question:	2.0 /15.0 Proposed new ITU-T Recommendation.0 Jan 2018.0				
Reference and title:	G.hsp.500	G.hsp.50Gpmd : Higher Speed Passive Optical Networks: 50G PMD			
Base text:₽	tbd₽	tbd. Timing: 2020		2020₽	
Editor(s):₽	Lei Wa, Dekun Liu Approval		Approval process:₽	AAP ₽	
applicability)):∂				
PON systems	s. This incl	vides the specifications of the physical medium depend udes the ODN characteristics, the wavelength plan, the onvergence layer.	· · · · · · · · · · · · · · · · · · ·		
PON systems converged tra Summary (p its usefulness Recomm PON systems	s. This incl ansmission c provides a bri s for their wo endation pro s. This incl	udes the ODN characteristics, the wavelength plan, the onvergence layer.	e power budget, and in mendation, thus perm dent (PMD) layer for t	iterfacing to the	
PON systems converged tra Summary (p its usefulness Recomm PON systems converged tra	s. This incl ansmission corovides a bri s for their wo endation pro s. This incl ansmission co	udes the ODN characteristics, the wavelength plan, the onvergence layer. ef overview of the purpose and contents of the Recommon rk): vides the specifications of the physical medium dependence to the ODN characteristics, the wavelength plan, the onvergence layer.	e power budget, and in mendation, thus perm dent (PMD) layer for :	iterfacing to the	
PON systems converged tra Summary (p its usefulness Recomm PON systems converged tra Relations to This could re	s. This incl ansmission c provides a bri s for their wo endation pro s. This incl ansmission c ITU-T Reco	udes the ODN characteristics, the wavelength plan, the onvergence layer. ef overview of the purpose and contents of the Recommon rk): vides the specifications of the physical medium dependence to the ODN characteristics, the wavelength plan, the onvergence layer.	e power budget, and in mendation, thus perm dent (PMD) layer for :	iterfacing to the itting readers to judg	

Why should be 1X50G (3)

□ 1X50G can be standardized in our time line

- 50G serial technology is going to be mature in the following few years due to the fast development in datacenter (200GE, 400GE)
- 29dB power budget is definitely feasible for downstream, it's only 3~4dB harder than 25G.
- feasibility of 50G per wavelength has been analyzed several contributions(wangbo_3ca_2_0717, liu_3ca_2_0917, Houtsma_3ca_1_0917, zhang_3ca_1_1107, liu_3ca_2a_1117), several base line proposals have been shown, there is no distinct gap for downstream

25Gb/s base line we agreed in Geneva | 50Gb/s base line in liu_3ca_2_1117 | 50Gb/s base line in Guo_3ca_x_0318

IEEE p802.3ca Task Force meeting, Chicago, IL

Why should be 1X50G (3)

- 50G EPON upstream also can be handled with several ways:
- 50G symmetric PON will only be used for very few high-end users, so higher cost is acceptable. Such as which can bear booster amplifier in ONU side.
- 50G/25G PON is a very good asymmetric system which can also provide a lot of symmetric service (Down/Up ratio is only 2:1), so maybe 50/50G is not necessary (urgent) in this stage

Why should be 1X50G (4)

□ There is still relative a long enough period for 50G PON goes to the market in large volume, it should be standardized based on the

lowest cost solution by then

Broadband Subscriber Status by 2017.06	Total Subscribers	FTTH ratio	Subs Bandwidth Structure
China Telecom	128.10 M	91.5%	Providing 50M and more for 57% subscribers
China Unicom	76.8 M	74%	Providing 50M and more for 52% subscribers

Source: MIC, report Japan 2015

Year	Peak Speed Projection	Event	
2014	1 Gbps (Actual)	Industry Connection	
2015	2 Gbps (Actual)	CFI and SG	
2016	3 Gbps	TF	
2017	5 Gbps	TF and Samples	
2018	7 Gbps	Standard and Trials	
2019	10 Gbps	Initial Deployments	
2020	15 Gbps	Year 2	
2021	22 Gbps	Year 3	
2022	33 Gbps	Year 4	
2023	50 Gbps	Year 5	
2024	75 Gbps	Year 6	
2025	>100 Gbps	Year 7	

US

ngepon_1509_salinger_1

Why should be 1X50G (4)

■ There is still relative a long enough period for 50G PON goes to the market in large volume, it should be standardized based on the lowest cost solution by then

- Non-NG-PON(mainly GPON) is still the main stream deployment in next few years,
 GPON just reached the peak and will decline slowly in volume.
- 10G PON will be the major step after GPON&EPON, and there are still some years for 10G PON to exceed 1G PON to be the majority.
- The requirement of 50G PON in mass volume will need even longer time.

Summary

- 1X50G is the future proof and has the cost advantage compared with 2X25G
- □ Do 1X50G is a good convergence with ITU PON
- ■1X50G can be standardized in current time line, 50G serial is feasible in technology
- □ There is still enough time period for 50G EPON to be deployed in volume, it should be standardized based on the lowest cost solution by then
- ■P802.3ca should define 50G EPON based on 1X50G!

Thank you