

Canova Tech

The Art of Silicon Sculpting

Gian Marco Bo Piergiorgio Beruto

- Follow-up on mixing segment node loading
 - http://www.ieee802.org/3/cg/public/Mar2018/brandt_cg_01a_0318.pdf
- Proposed resolution to comment #478
 - http://www.ieee802.org/3/cg/comments/802.3cg draft1p2 Received Comment%
 201D.pdf
- Investigate the loading effect on the eye opening for different node count
- Propose a max total capacitance load across all nodes and a max node capacitance load

Modeling

- 25m total mixing segment
- 8 to 40 nodes
- Using lumped configuration since it represents the worst case (in particular for the differential node capacitance value)
- Eye opening have been investigated versus differential node resistance, inductance and capacitance values.
- RLC from http://www.ieee802.org/3/cg/public/Mar2018/brandt-cg-01a-0318.pdf and comment #478
 - $-R > 5K\Omega$
 - -440 uH < L < 1 mH
 - C < 4.5 pF
- Node capacitance has been determined simulating a large number of nodes (40)
- We expect to afford an higher capacitance limit for a lower number of nodes

Modeling (concept diagram)

Modeling (schematic)

Modeling (schematic)

Modeling: 25m lossy transmission line S11 and S12

• Red: limit

Black: model

Modeling

- Preliminary results show only a weak dependence of the eye on the differential resistance and inductance versus the number of nodes, but there is a strong dependence on the differential capacitance.
- Several runs have been then performed with the following configuration.
 - Differential node resistance set to $10 \mathrm{K}\Omega$
 - Differential node inductance set to $440\mu H$
 - Differential node capacitance sweep between 2pF to 30pF
 - Variable number of nodes between 8 and 40
 - Eye opening versus number of nodes and differential node capacitance evaluated

Eye diagrams

Eye diagrams

Eye diagrams

RX Eye Amplitude vs. Node Differential Capacitor and Number of nodes

- From this data the maximum capacitance for each node C_{node} and the total capacitance across all nodes C_{tot} can be extrapolated
- Assuming 500mV
 RX eye opening

Node Differential Capacitor [pF]

Node and total capacitance vs number of nodes

Per node cap and total cap vs number of nodes

- 180pF limit for the total capacitance can be considered a reasonable value (margin included)
- For a 40 nodes network tot cap limit would give 180pF / 40 = 4.5pF per node
- For a 8 nodes network tot cap limit would give $180 \mathrm{pF} / 8 = 22.5 \mathrm{pF}$ per node
- We propose a 15pF per node limit to keep more margin (eye opening) for automotive use cases

Conclusion

- Changing the number of nodes, the total amount of differential capacitance that we can afford to keep a reasonable eye opening changes.
- Maximum total capacitance across all nodes C_{tot} and the maximum capacitance for each node C_{node} can be defined, along with R and L limits, as follows:
 - R > 10 k0hm
 - -440 uH < L < 1 mH
 - C_{tot} < 180 pF
 - C_{node} < 15 pF
- MDI minimum parallel impedance can be expressed as follow:

$$|Z| = \frac{1}{\sqrt[2]{\frac{1}{R^2} + \left(\frac{1}{2\pi \cdot f \cdot L} - 2\pi \cdot f \cdot C_{node}\right)^2}}$$

-0.3 MHz < f < 40 MHz