

Industrial style Single Pair Ethernet connector acc. to IEC 61076-3-125

comments #80 & #81 (#75)

IEEE 802.3cg Task Force Bangkok November 2018

prepared by:

Rainer Schmidt – HARTING Technology group, email: rainer.schmidt@HARTING.com

Matthias Fritsche – HARTING Technology group, email: matthias.fritsche@HARTING.com

Supported by:

Yvan Engels - Leoni AG, Dieter Schicketanz - Reutlingen University Günter Feldmeier & Michael Hilgner - TE Connectivity Hans Lackner – QoSCom GmbH

... more in discussion

International SPE connector selection

SPE connector mating face selection process results from TIA TR42 and ISO/IEC SC25 WG3:

Variant 1 – LC style for $M_1I_1C_1E_1$ acc. IEC 63171-1

Variant 2 – Industrial style for $M_2I_2C_2E_2$ and $M_3I_3C_3E_3$ acc. IEC 61076-3-125

IP20

M8 IP65/67

M12 IP65/67

The LC - style and the Industrial - style SPE connector mating face

- Will go into the ISO/IEC 11801 documents part 3 and part 6
- Will go via IEC SC65C JWG10 into the IEC 61918 documents by an amendment
 - will go into the IEC 61784-5-x series (Industrial field bus cabling like PROFINET, EtherNet/IP, EtherCAT and so on...)
- Will go into the ISO/IEC 11801-1 documents requested mating interface for SP cabling at the communication outlet (TO, AO, EO...)
- Will be the offer to the industry for implementing any SPE service including remote power into devices or cabling solutions ...
- Will be added to the TIA TR42-1 (TIA 568.1) and TR42-9 (TIA 1005) cabling standards

Summary

The Industrial Style SPE connector mating face

- according to IEC 61076-3-125 will be suitable for M2I2C2E2 / M3I3C3E3 from IEEE802.3cg (10BASE-T1) up to IEEE802.3ch (MultiGigBASE-T1)
- Wide range of possible variants for different cable diameters and special applications from IP20 up to M8 / M12 for IP65/67 with screw and PushPull locking
- Design is open for advanced transmission features up to 3GHz needed for IIoT,
 vision control and future use cases
- IP free connector standard IEC 61076-3-125 supporting the big variety of SPE applications (will be published in 2019 – proposed to renumbered to IEC 63171-6)
- → The Industrial Style SPE connection system for all MICE 2/3 use cases must be added to IEEE 802.3cg as MDI to complete 802.3cg

Thank you!

BACKUP

Industrial SPE Solution

based on the IEC 61076-3-125 project in IEC SC48B

Connector type	Locking mechanism	
1 pair core container	n.a.	
same container used in all MICE3 connector housings		
with stainless steel shielding		
IP20 jack and plug	metal latch	
for cables AWG26 up to AWG22 (18) (solid and stranded)		
Cable diameter 4 – 6 mm		
IP65/67 jack and plug in M8 housing	locking screw, optional: PushPull*	
for cables 26AWG up to AWG22 (18) (solid and stranded)	*compatible to the locking screw	ľ
Cable diameter 4 – 6 mm		
IP65/67 jack and plug in M12 housing	locking screw, optional: PushPull*	,
for cables AWG26 up to AWG16 – esp. for IEEE802.3cg (solid and stranded)	*compatible to the locking screw	
Cable diameter 4 – 12 mm	compatible to the locking sciew	

HARTING SPE Solution – Main Dimensions based on the IEC 61076-3-125 project in IEC SC48B

HARTING SPE Solution - Facts

based on the IEC 61076-3-125 project in IEC SC48B

Technical Parameters

Electrical performance

- Rated voltage: 60V DC
- Rated current: 4A@55°C, 1,5A@85°C
- Voltage proof* 1000V pin-to-pin and 1500V pin-to-shield, (*not for the hybrid version within IEC61076-3-125)

- Bandwidth up to 600MHz* for up to 1Gbit/s
 *pin design and size optimized for frequencies up to 3GHz for possible multi gig applications (in discussion by IEEE802.3ch)
- Fully symmetrical design of contacts in relation to the screen for optimal HF performance (coupling attenuation)
- Fully shielded 1 pair core container (360° stainless steel shielding shell)

Mechanical performance

- Typical industrial pin-socket contact design for high reliability and mating security (2 contact points)
- Minimum 1000 mating cycles for the core element and the IP20 version.
 For the M8 and M12 versions >100 mating cycles based on the locking mechanism
- · Polarization met by design

MICE3 performance

- Temperature range -40°C up to +85°C
- IP degree from IP20 to IP65/67
- EMC resistant according to E₃ for all connector versions

Ø 0,5

for further technical details pls. refer to IEC61076-3-125 on the IEC website

HARTING SPE Solution - Versions based on the IEC 61076-3-125 project in IEC SC48B

Possible variants from right to left:

- M8 Snaplnn
- **M8 Screw locking**
- **M8 PushPull locking**
- M12 Screw locking (not shown)
 - M12 PushPull locking

Prototype M8 Snap-Inn style, plug overmolded and straight PCB THR jack with housing

Prototype IP20 style, plug and angled PCB THR jack

HARTING SPE Solution - Summary based on the IEC 61076-3-125 project in IEC SC48B

The industrial style balanced Single Pair Copper Connector based on IEC61076-3-125

- Delivers best HF performance and head room for remote powering (up to 1000mtrs.)
- Future-proof → prepared for higher bandwidths and bigger loads
- Using existing and already standardized housings/dimensions and locking mechanisms → simple implementation, cost effective new device design
- IP20 interface pluggable with locking to IP65/67 M8 and M12 connector versions for testing and configuration set ups (usually non permanent use)

IP20 SPE plug mated with M12 SPE jack

- Prototypes and test results for the HARTING single pair copper connector available
- Connector standard will be published in 2019
- First SPE connectivity products will be launched in 2019

HARTING SPE Solution – HF results (simulations) based on the IEC 61076-3-125 project in IEC SC48B

2.1 T1 connector model

All simulation results are up to 3GHz bandwidth to meet the requirements of IEEE802.3ch for MultiGigBASE-T1

HARTING SPE Solution – HF Measurement results based on the IEC 61076-3-125 project in IEC SC48B

HARTING SPE Solution – HF Measurement results: Pushing Performance

based on the IEC 61076-3-125 project in IEC SC48B

