

## 100GEL C2M Channel Reach Options & System Design Impacts

Jane Lim, Cisco

Pirooz Tooyserkani, Cisco

Upen Reddy Kareti, Cisco

Joel Goergen, Cisco

Marco Mazzini, Cisco

5/23/2018

## **Supporters**

- Gary Nicholl, Cisco
- Mark Nowell, Cisco
- Matt Traverso, Cisco
- David Chen, AOI
- Kohichi Tamura, Oclaro
- Rajesh Radhamoha, Maxlinear
- Hassaan Aslam, Maxlinear
- Phil Sun, Credo

- Takeshi Nishimura, Yamaichi
- Chris DiMinico, MC Communications/PHY-SI LLC
- Rachad Samaha, Multilane

# 100GEL C2M Channel Requirements (Cisco Proposal in Rosemont Meeting)

- Target ball to ball IL ≤ 12dB @ 26.56GHz :
  - To avoid using heavy receiver inside the optical modules → lower module power consumption
  - Make 100GEL C2M link budget work with 100GEL CR → twinax Cu cables support upto 2 m (see Goergen\_100GEL\_02\_0318)
    - ball to ball 30dB @26.56GHz, bump to bump 36dB @26.56GHz
- Overall IL target should allow reasonable trace length with minimum 5" to reduce # of retimers at front ports
- Include present & next generation packaging and PCB technologies

## What Have Been Decided in Rosemont Meeting

- Define a single-lane 100 Gb/s PHY for operation over electrical backplanes supporting an insertion loss ≤ 28 dB at 26.56 GHz.
- Define a single-lane 100 Gb/s PHY for operation over twin-axial copper cables with lengths up to at least 2 m.

## 100GEL C2M & CR Link Budget Original Proposal



Figure 1: 100GEL C2M insertion loss budget at 26.56 GHz



Figure 2: 100GEL CR 30dB insertion loss budget at 26.56 GHz

## 100GEL C2M & 100GEL CR Link Budget Adjusted Proposal

- Tighten host PCB budget, from 8.0 dB to 7.5dB
- Tighten connector only loss, from 2.0 dB to 1.5 dB
- Loosen Module PCB or HCB loss, from 2.0dB to 2.5dB



Figure 1: 100GEL C2M 11.5dB insertion loss budget at 26.56 GHz



Figure 2: 100GEL CR **28dB** insertion loss budget at 26.56 GHz

## Why 7.5dB is Required for Host PCB Budget?

- With Meg-7N material, 4.5mil trace IL at HT is measured to be 1.24 dB/in at 28 GHz
- For each front port channel there will be 2 set of vias (at host ASIC BGA footprint & at I/O connector footprint) with stripline routing
  - Footprint via with 7.9mil drill & 130mil thick stackup is simulated to be 0.68 dB at 28 GHz
- Total host PCB budget = (5 x 1.24 + 2 x 0.68) = 7.56 dB

## **100GEL C2M Channel Options**

- 3 Options in consideration
  - Option 1: 11-12dB VSR-like reach target
    - Symmetrical link budget on switch side (12dB) & NIC side (12dB)
    - Same port can support 2m DAC
  - Option 2: 14-16dB SR-like reach target
    - Asymmetrical link budget switch side (15dB) & NIC side (9dB)
    - In switch-to-switch case, this is equiv. to Option III in "ghiasi\_100GEL\_adhoc\_01\_050918" which require separate switch host design for 2m DAC support
  - Option 3: 18-20dB MR-like reach target
    - Extended reach for optical interface
    - No DAC support

## Option 1: 11-12 dB VSR-like Reach Target (1)

#### Pros:

- Can support both Cu and Optics in the same port (Universal port), similar to what are accustomed to today
- Benefits lower power optical module design (simple serdes)
  - 100 300 mW/ch power saving compared to MR-like serdes
- May need to add PHY device anyhow on every port to support MACsec or other features
- Offers flexibility in system designs, i.e. for channel > 5", can use retimers or intra-box cables (see next slide), belly to belly module connector, etc

#### Cons:

- Potential impact on system cooling when using intra-box cables
- System cost increase using retimer or intra-box cables
- Require chiplet or innovative packaging technique to reduce package loss

## Option 1: 11-12 dB VSR-like Reach Target (2)

- Universal port design on multi-ASIC line-card to support both Optics and 2m DAC
- The diagram depicts the actual placement and routed trace length

# Edge ports use retimers ASIC **ASIC**

#### Edge ports use intra-box cables



## Option 2: 14-16 dB SR-like Reach Target (1)

#### Pros:

- Allow longer host PCB trace for Optics (upto 8"), much fewer retimers or intra-box cables
- Less impact on system cooling
- System design cost advantage (less retimers)
- All the flexibilities in option 1 plus a choice for the system designers to optimize the non-DAC case

#### Cons:

- Switch to switch 2m DAC support doesn't work
- More complex Rx design in module CDR
  - Serdes power penalty (need serdes suppliers to provide incremental power increase)
  - Most Serdes vendors are not considering to design for this SR-like Serdes at present time
- More expensive for rack server NIC card, may need to add retimer for >3" trace length (see next slide)

## Option 2: 14-16 dB SR-like Reach Target (2)

- Rack Server PCIe NIC Card:
  - Ethernet SFP Port typical trace lengths of 3 4.5" based on today NIC card implementations.
    Potential trace length reduction to 4" depends on ASIC pin-out and board placement



## Option 3: 18-20 dB MR-like Reach Target

- Pros:
  - Allow even longer host PCB trace (upto 11") for Optics
  - No retimers or intra-box cables needed (which is the main goal), lower system cost
  - Less impact on system cooling without intra-box cables
- Cons:
  - No support for 2m DAC (against the adopted objective !)
  - Very complex Rx design in module CDR → Power penalty
    - Significant power increase compared to VSR (upto 1.2W added serdes power for a 400G module)
  - Impact on the design of certain PMDs (exceeding module power envelope)
  - Serdes may require link training (in-band or out-band)

## **Summary**

- Our preference for C2M reach is Option 1 with 11-12dB which aligns with 2m DAC objective, and gives simple product consumption for DAC cables (switch to switch, switch to server, server to server)
- We are still studying Serdes design feasibility and module design implication for Option 2, but have concern in product consumption and impact to the server design
- Option 3 with MR Serdes is not a viable solution

## Thank You!

IEEE P802.3bs 200Gb/s and 400 Gb/s Ethernet Task Force.

## **Backup Slides**

## 400GAUI-8 C2M IL Budget



Figure 120E-3—400GAUI-8 chip-to-module insertion loss budget at 13.28 GHz

Total channel link budget (ball to ball) = 10.2dB at 13.28GHz

Source: IEEE802.3bs

## **200GBASE-CR4 Channel IL Budget**



NOTE—The connector insertion loss is 1.07 dB for the mated test fixture. The host connector is allocated 0.62 dB of additional margin.

Figure 136A-1-30 dB channel insertion loss budget at 13.28 GHz

Source: IEEE802.3cd