Channel specifications for 802.3ck – challenges and possible paths

Adee Ran, Intel May 2018

Outline

- Past (some history)
- Present (COM)
- Future (challenges and paths forward)

Channel specifications – why?

- 1. Enable vendors of "channels" (backplanes, cables, fibers...) to design products that are expected to work
- 2. Enable integrators and network designers to use certified channels without testing each one
- 3. Enable device designers to create good enough receivers
 - Receiver design requires some knowledge about expected channels, e.g. to decide what kind of equalization is needed
- 4. As a physical layer specification we are expected to "guarantee" that compliant components will create a working system
 - We always specify Tx and Rx normatively; usually channels too
 - Preferably, component specs are linked to create the expected system performance
 - Preferably, minimize false pass and false fail probabilities

Brief history of channel electrical specifications in 802.3

- Early days 10 Megabit variations
 - Mostly based on external cabling specifications (RG 58, ISO/IEC 11801 Class D aka Category 5e)
 - Main specifications are impedance, insertion loss (specific frequencies 5 / 10 MHz), velocity of propagation, edge jitter, DC loop resistance; for twisted-pair, also crosstalk
 - Receiver is essentially a burst CDR; equalization not required or assumed; no stress test specified
- BASE-T higher rates (100M to 40G)
 - Based on external cabling specifications (ISO/IEC 11801 class D, E, F... aka category 5e/6/6A...) with up to 100 meter reach (later 30 m)
 - Detailed equations of frequency-domain masks for IL, RL, NEXT, FEXT, MDNEXT, PSELFEXT...
 - No time-domain specifications
 - Tight RL specs protect against reflections in reasonable installations
 - Receivers assumed to have strong adaptive equalization and cancellation (at least from 1000BASE-T and on)
 - Receiver expectations are not specified explicitly
 - Receiver BER specified with compliant cables, including noise stress tests

Channel specs history – continued

- Early copper cable 10GBASE-CX4
 - Uses BASE-T specification methods (frequency-domain masks, no time-domain specifications)
 - No receiver stress test specified
- 10G/40G backplane and copper cable (802.3ap, 802.3ba)
 - Annex 69B: fitted attenuation, IL, ILD, RL, ICR
 - Frequency domain masks, informative
 - Receiver stress test specified but had poor correlation with operation on real channels
- 25G/100G backplane and copper cable (802.3bj, 802.3by)
 - Introduced COM (detailed below)
 - RL still as frequency domain mask
- 50G backplane and copper cable (802.3cd)
 - Introduced ERL

What's COM

- COM is a method to generate one figure of merit for a channel, using
 - 1. Time-domain analysis (pulse responses) of input channels
 - 2. Reference noise sources (SNR_{TX}, η_0 , jitter)
 - 3. Reference model for Rx equalization capabilities (with standard-specified Tx equalization)
 - 4. Reference models for packages and PCB traces
 - 5. Figure of merit and search algorithm to maximize it using equalization
 - 6. Statistical analysis to calculate the margin for a target detector error ratio (DER)
- COM provides a common language between signal integrity and SERDES designers – design guidance and a single figure of merit

What's in COM

- Until now we have used a long zero-forcing DFE as part of the reference Rx
 - Very simple to analyze
 - Close to something that can be implemented
 - Implementations may be different from the reference
- The famous 3 dB minimum was an allowance for implementation "penalties"
 - Non-ideal slicers, internal noise, CDR jitter, DFE quantization, etc.
 - Receivers can be "better than the reference" and operate well over lower-COM channels
- Some inaccuracies are still included
 - Mainly related to nonlinear effects, but also actual packages, terminations, and boards
 - Assumed to be covered by the 3 dB margin
- In practice, not everything is worst-case at the same time, so there is an apparent pessimism
- COM has been widely adopted by the industry

The COM tool

- Contributed as Matlab source code during 802.3bj
 - Mostly by Rich Mellitz and Adee Ran
- It is an example of implementation of annex 93A not an official tool
 - However, it is widely used
- Work in minor maintenance mode continued in 802.3bm, 802.3by, 802.3bs, 802.3cd
 - Including extensions to ERL
 - Thank you, Rich!
- The existence of a tool significantly accelerated the standards completion and helped adoption
 - I assumed we want to continue this

Challenges for 100GEL - #1

- Reference receiver model
 - Long analog DFE seems impractical (for expected modulations in this project)
 - Digital Rx architecture should be considered
 - Long DFE still impractical, but long FFE is possible (with perhaps 1-tap DFE)
 - Digital implementation brings in quantization/dynamic range considerations which are not negligible
 - What is the reference analog equalizer?
 - In the ~25 GBd standards we had a 1st-order CTLE with pole at ½ Nyquist and tunable zero (+ similar low-frequency 1st-order CTLE)
 - Digital/analog equalization tradeoffs may result in analog implementations quite different from this
 - Can we standardize a complex analog circuit?
- Should the reference receiver be close to an actual implementation? Or should it be simple?
 - Simplicity will reduce correlation with actual implementations
 - Accuracy will require lots of details that require consensus and editing, will make the standard complex, and may match a single implementation
 - Something in between?

Challenges for 100GEL - #2

- If equalization includes a long FFE, what is the optimization method?
 - Currently COM uses exhaustive search for short FFE choice (in the Tx)
 - Impractical for long FFE
 - There are analytic methods, not as simple as zero forcing the ISI
 - For a given TX+CTLE setting, zero forcing the ISI (as a DFE would) may be a reasonable approximation
 - In practice, Rx equalization settings will be implementation dependent
 - Especially with digital receivers which may have various analog pre-equalizers
- 100GEL will likely have new challenges and new solutions
 - Example: far ISI from package reflections
 - Will the method predict how a channel will "work" across receiver implementations?
 - If not it's not too useful…

Challenges for 100GEL - #3

- Run time considerations
 - The original COM tool in 802.3bj, with 3-tap Tx equalizer and 1 degree of freedom for CTLE, took a few minutes to run on a single dataset
 - With 4th tap and 2 degrees of freedom (802.3cd) ~15 minutes
 - More Tx taps? → problem
- Is there a faster optimization?
 - Either a mathematical method or some heuristic...
 - Can we implement something in a tool without defining it?

Summary of open questions

- Reference Rx: accuracy / simplicity tradeoff
- Optimization method: detailed math, exhaustive search, approximation, other?
- More Tx taps: can we optimize them in COM calculation?
- Should we incorporate complex solutions (if adopted) into COM?
- Assuming we continue providing a tool should the standard specify search heuristics?

We should start working...

Option A:

- Keep using the current COM reference receiver
- Play with parameters to find "what would it take", build consensus, decide
- Let chip designers cope with the details

Option B:

- Look for new reference receiver proposals (including detailed optimization methods)
- Implement into the current tool or build a new tool, test contributed channels
 - For each proposal? or after choosing?
- Build consensus, choose one proposal
- Let chip designers cope with the result
- OR -
- Start with option A, shift to B if/when needed (and depending on proposals)

DISCUSSION...