Annex 93A Proposed Updates

Howard Heck, Intel Corporation

May 2019

IEEE 802.3ck 100 Gb/s, 200 Gb/s and 400 Gb/s Electrical Interfaces Task Force

Objective & Summary of Expected Changes

Objective: Propose updates to Annex 93A and get support and/or feedback.

Expected changes:

- Flexible reference package model per http://www.ieee802.org/3/ck/public/18 11/benartsi 3ck 01 1118.pdf.
 - Modify Table 93A-1 to include the parameters for the PTH transmission line (slide 3).
 - Modify 93A.1.2 include the transmission line section for the PTH (slide 4).
 - Open: May need verbiage to describe usage with the new model for .ck as well as existing models for .bs and .cd.
- Add a 3rd pre-cursor tap to the transmit equalizer in Table 93A-1.
- Modify Table 93A-2 to include references to the new clauses (162, 163).
- Reference receiver with a mix of fixed and floating DFE taps.
 - Refer to http://www.ieee802.org/3/ck/public/19 05/mellitz 3ck 01 0519.pdf.

Reference Package: 93A.1.2.4

802.3cd

Existing text:

93A.1.2.4 Assembly of transmitter and receiver device package models

The scattering parameters for the transmitter device package model $S^{(p)}$ are the result of the cascade connection of the device capacitance, package transmission line, and board capacitance as defined by Equation (93A–15).

$$S^{(tp)} = \operatorname{cascade}(\operatorname{cascade}(S^{(d)}, S^{(l)}), S^{(p)})$$
(93A-15)

Similarly, the scattering parameters for the receiver device package model $S^{(rp)}$ are the result of the cascade connection of the board capacitance, package transmission line, and device capacitance as defined by Equation (93A–16).

$$S^{(rp)} = \operatorname{cascade}(\operatorname{cascade}(S^{(p)}, S^{(l)}), S^{(d)})$$
(93A-16)

802.3ck

Revised text:

93A.1.2.4 Assembly of transmitter and receiver device package models

The scattering parameters for the transmitter device package model $S^{(tp)}$ are the result of the cascade connection of the device capacitance, package transmission lines, and board capacitance as defined by Equation (93A-15).

$$S^{(tp)} = cascade(cascade(S^{(d)}, S^{(l)}), \mathbf{S}^{(v)}), S^{(p)})$$
(93A-15)

Similarly, the scattering parameters for the receiver device package model $S^{(rp)}$ are the result of the cascade connection of the board capacitance, package transmission line, device capacitance, package transmission line, and device capacitance as defined by Equation (93A-16)

$$S^{(rp)} = cascade(cascade(\frac{cascade}{S^{(p)}, S^{(v)}}, S^{(l)}), S^{(l)})$$
(93A-16)

Reference Package: Table 93A-1

Insert the following rows (and footnotes) into Table 93A-1 at the bottom of the "Device package model" row, and reletter the footnotes accordingly:

Table 93A-1—COM parameters

Parameter	Reference	Symbol	Units
PTH transmission line length ^c PTH transmission line characteristic impedance ^d		$egin{array}{c} Z_{ m p2} \ Z_{ m c2} \end{array}$	mm W

 $[^]c$ Some clauses that invoke this method do not provide a value for z_{p2} . See 93.A.1.2. d Some clauses that invoke this method do not provide a value for Z_{c2} . See 93.A.1.2.

Transmit Equalizer: Table 93A-1

Insert the following rows (and footnotes) into Table 93A-1 after the "Transmitter equalizer, minimum cursor coefficient" row, and reletter the footnotes accordingly:

Table 93A-1—COM parameters

Parameter	Reference	Symbol	Units
Transmitter equalizer, 3 rd pre-cursor coefficient ^a		c(-3)	
Minimum value			
Maximum value			
Step size			

^aSome clauses that invoke this method do not provide a value for c(-3). See 93.A.1.6.

Table 93A-2

Add the following of rows in Table 93A-2 below the "100GAUI-4 C2C (Annex 135D)" row:

Physical Layer	Parameter values	
100GBASE-CR1 (Clause 162)	Table 162-x	
200GBASE-CR2 (Clause 162)	Table 162-x	
400GBASE-CR4 (Clause 162)	Table 162-x	
100GBASE-KR1 (Clause 163)	Table 163-x	
200GBASE-KR2 (Clause 163)	Table 163-x	
400GBASE-KR4 (Clause 163)	Table 163-x	

Note: the 'x' will be replaced with the appropriate table numbers once the drafts for those clauses are available.

Thank you!