Comment Summaries: Clause 162

Howard Heck, Intel

IEEE P802.3ck Task Force November 11, 2020

Summary

Topic	Comments
Medium Delay	120
PMD Control	47
RIT	131
TX coefficients	50
TX vf	124

Comment 120 – Medium Delay

120 C/ 162 SC 162.5 P 137 L 19 Kocsis, Sam Amphenol Comment Type TR Comment Status D medium delay one-way delay no more than "14ns" SuggestedRemedy one-way delay no more than "16ns", for consistency with ERL parameter values Proposed Response Response Status W PROPOSED REJECT. The relationship with the ERL parameters is irrelevant.

The comment does not provide sufficient justification for the proposed changes.

Note: Commenter noted linkage between comment #113 (proposed N=5100) & the medium delay proposal in this comment.

Comment #47

C/ 162 SC 162.9.3 P 146 L 42 # 47

Ran, Adee Intel

Comment Type T Comment Status D

PMD control

(CC)

for c(0), PRESET 2 in Table 162-11 has a value of 0.5 (+/-half of a step). To enable this value, the maximum value at minimum state should be no higher than 0.5.

Change should also be applied in 162.9.3.1.5.

Also applies to KR, Table 163-5 (163.9.2) and to AUI-C2C, Table 120F-1 (120F.3.1.1) which should work over lower-loss channels.

SuggestedRemedy

Change 0.54 to 0.5, in all places listed in the comment.

Proposed Response

Response Status W

PROPOSED ACCEPT.

[Editor's note: CC: 162, 163, 120F]

Referenced Preset

Table 162-11—Coefficient initial conditions

Coefficient update state	ic_req	c(-3)	c(-2)	c(-1)	c(0)	c(1)
OUT_OF_SYNC ^a	N/A	0	0	0	1	0
NEW_IC	preset 1 ^a	0	0	0	1	0
	preset 2	0 ± 0.0125	0 ± 0.0125	0 ± 0.0125	0.5 ± 0.0125	0 ± 0.0125
	preset 3	0 ± 0.0125	0 ± 0.0125	-0.075 ± 0.0125	0.75 ± 0.0125	0 ± 0.0125
	preset 4	0 ± 0.0125	0.05 ± 0.0125	-0.2 ± 0.0125	0.75 ± 0.0125	0 ± 0.0125
	preset 5	-0.025 ± 0.0125	0.075 ± 0.0125	-0.25 ± 0.0125	0.65 ± 0.0125	0 ± 0.0125

Proposed implementation:

Table 162-10

Transmitter output waveform ^b			
	162.0.2.1.4	0.005	
abs step size for all taps (min)	162.9.3.1.4	0.005	_
abs step size for all taps (max)	162.9.3.1.4	0.025	_
value at minimum state for $c(-3)$ (max)	162.9.3.1.5	-0.06	_
value at maximum state for $c(-2)$ (min)	162.9.3.1.5	0.12	_
value at minimum state for $c(-1)$ (max)	162.9.3.1.5	-0.34	_
value at minimum state for $c(0)$ (max)	162.9.3.1.5	0.54	_
value at minimum state for $c(1)$ (max)	162.9.3.1.5	-0.2	_

Table 163-5

1	E	į.		
Transmitter waveform ^b				
abs step size for $c(-3)$, $c(-2)$, $c(-1)$, $c(0)$, and $c(1)$ (min)	162.9.3.1.4	0.005	00.0	
abs step size for $c(-3)$, $c(-2)$, $c(-1)$, $c(0)$, and $c(1)$ (max)	162.9.3.1.4	0.025	_	ı
value at minimum state for $c(-3)$ (max)	162.9.3.1.5	-0.06	-/	
value at maximum state for $c(-2)$ (min)	162.9.3.1.5	0.12		ı
value at minimum state for $c(-1)$ (max)	162.9.3.1.5	-0.34		Ι.
value at minimum state for $c(0)$ (max)	162.9.3.1.5	0.54		I /
value at minimum state for $c(1)$ (max)	162.9.3.1.5	-0.2		/
				<i>y</i>

Table 120F-1

	T I		
Output waveform ^b			
abs. step size for all taps (min)	162.9.3.1.4	0.005	/ —
abs. step size for all taps (max)	162.9.3.1.4	0.025	/ _
value at min state for $c(-3)$ (max)	162.9.3.1.5	-0.05	_
value at max state for $c(-3)$ (min)	162.9.3.1.5	0	-
value at min state for $c(-2)$ (max)	162.9.3.1.5	0	· -
value at max state for $c(-2)$ (min)	162.9.3.1.5	0.1	-
value at min state for $c(-1)$ (max)	162.9.3.1.5	-0.3	_
value at max state for $c(-1)$ (min)	162.9.3.1.5	0	_
value at min state for $c(0)$ (max)	162.9.3.1.5	0.54	_
value at min state for $c(1)$ (max)	162.9.3.1.5	-0.1	1
value at max state for c(1) (min)	162.9.3.1.5	0	_
			0

Comment #131: RIT

C/ 162 SC 162.9.4.3 P152 L 32 # 131

Ghiasi, Ali Ghiasi Quantum/Inphi

Comment Type TR Comment Status D

RITT

Given that for low loss cable the loss is controlled to 1 dB, we should do the same for high loss cable

SuggestedRemedy

Increase the cable assembly test case min loss from 17.75 to 18.75 dB

Proposed Response Status W

PROPOSED ACCEPT.

Proposed implementation:

Table 162-14—Interference tolerance test parameters

Parameter	Test 1 (Test 1 (low loss)		Test 2 (high loss)	
	Min	Max	Min	Max	Units
Test pattern	Scrambled idle encoded by FEC				
FEC symbol error ratio required ^a	< 10 ⁻³			_	
Test channel insertion loss at 26.56 GHz ^b	10.5	11.5	23.625	24.625	dB
Cable assembly insertion loss at 26.56 GHz	10.5	11.5	17.75	19.75	dB
COM ^c	3 4 3		3	dB	

^aSee 162.9.4.3.5 for definition of FEC symbol error ratio.

18.75

^bInsertion loss between the two test references (see Figure 110–3b).

The COM value is the target value for the SNR_{TX} calibration defined in 162.9.4.3.3 item f. The SNR_{TX} value measured at the Tx test reference should be as close as practical to the value needed to produce the target COM. If lower SNR_{TX} values are used, this would demonstrate margin to the specification but this is not required for compliance.

Comment #50: Tx Coefficients

Cl 162 SC 162.9.3.1.4 P 149 L 43 # 50

Ran, Adee Intel

Comment Type E Comment Status D TX coefficients

"When coef_sel is -3, -2, -1, 0, or 1," - the list includes all possible values, so there is no need for this phrase.

SuggestedRemedy

Delete the quoted phrase.

Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.

Implement with editorial license.

Proposed implementation:

162.9.3.1.4 Coefficient step size

When coef_sel is -3, -2, -1, 0, or 1, the change in the normalized transmit equalizer coefficient $c(\text{coef_sel})$ corresponding to a request to "increment" shall be between 0.005 and 0.02, and the change in the normalized transmit equalizer coefficient $c(\text{coef_sel})$ corresponding to a request to "decrement" shall be between -0.02 and -0.005.

Comment #124: Tx Vf

C/ 162 SC 162.9.3.1.2 P 149 L 6 # 124

Hidaka, Yasuo Credo Semiconductor

Comment Type T Comment Status D

The definition of steady-state voltgage vf in clause 136.9.3.1.2 uses the linear fit pulse p(k). The linear fit pulse p(k) is calculated with Dp=3 in clause 136, whereas it is calculated with Dp=4 in clause 162. It is not clear which procedure is used to calculate the linear fit pulse p(k).

SuggestedRemedy

Change "The steady-state voltage vf is defined in 136.9.3.1.2, and is determined using Nv=200."

to

"The steady-state voltage vf is defined in 136.9.3.1.2, and is determined using Nv=200 and linear fitted pulse p(k) calculated by the procedure in 162.9.3.1.1."

Proposed Response Response Status W
PROPOSED ACCEPT.

vf