In support of comments \#8, 9, 10, 11 against D1.2

David Lewis, Lumentum

Nov 15 ${ }^{\text {th }}, 2021$
IEEE P802.3cw $400 \mathrm{~Gb} / \mathrm{s}$ over DWDM systems Task Force

Comment \#8: Need detailed functions and state machines at 155.4

PCS block diagram

Transmit state diagram from Fig 119-14

DSP FAW synchronization state diagram and PMA deskew state diagram (new)

Where are new state diagrams needed? PCS receive direction

DSP FAW lock state diagram

- Based on 802.3ct Figure 153-7 with fas replaced by faw, and fecl replaced by pmal
- 4 lanes instead of 20

Figure 155-13-DSP FAW synchronization state diagram

PMA deskew state diagram

- Based on 802.3ct Figure 153-8 with fec_align replaced by pma_align

Figure 155-14—PMA deskew state diagram

Alignment marker lock state diagram

- Based on Figure 119-12 (400GBASE-R PCS) but for a single lane
- No need for lane mapping
- Look for all 1920 bits (16x120) instead of just a single 120-bit sequence?

Figure 155-15-Alignment marker lock state diagram

Accompanying proposed text:

155.4 400GBASE-ZR PCS and PMA detailed functions and state diagrams

Editor's Note (to be removed prior to publication): Task force has not yet considered a baseline for detailed functions and state diagrams.

The body of this subclause includes state diagrams, including the associated definitions of variables, funcThe body of this subclause includes state diagrams, includiag the associated deimcinns of variables, funcgram prevails.
The notation used in the state diagrams follows the conventions of 21.5 . The notation ++ after a counter o integer variable indicates that its value is to be incremented

155.4.1 State variables

155.4.1.1 Variables

align_status
amp_counter_done
amp_match
amp_valid
ch_bad
${ }^{\text {hi }}$ - ser
${ }^{\mathrm{Hin} \text { ser }}$
rx_local degraded
r__ m _degraded
all_locked
A Boolean variable that is set to TRUE when faws_lock \times is TRUE for all x and is set to FALSE when faws lock is FALSE for any
current pmal
variable that holds the PMA lane identification octet corresponding to the current FAW that is recognized on a given lane of the PMA service interface. The value of this variable modulo 4 represents the PMA lane number. It is compared to the expected value based on the vanable prev p -
mal to confim that the location of the FAW has been detected. This value is interpreted with the most siguificant bit transmitted first
faws counter_done
Boolean variable that indicates that faws counter has reached its terminal count
Boolean variable that holds the output of the function FAW_COMPARE
faw_valid
Boolean variable that is set to TRUE if the received 22 -symbol sequence is a valid FAW. The FAW consists of one of the sequences listed in Table 155-3. The sequence is considere
valid if at least TBD symbols match the known bits of the pattern described in 155.3.3.1.
faws_lock \times
ooolean variable that is set to TRUE when the receiver has detected the location of the FAW for
pma_align_s_status
A Boolean variable set by the PMA aligument process to reflect the status of PMA lane-to-lane ligmment. Set to TRUE when all lanes are synchronized and aligned and set to FALSE when the deskew process
ma_aligment_valid
pma_ aligument_valid
Boolean variable that is set to TRUE if all PMA lanes are aligned PMA lanes are considered to be aligned when faws lock $\times>$ is TRUE for all x, each PMA lane has a unique lane number, and the
PMA lanes are deskewed. Otherwise, this variable is set to FALSE.
pma_enable_deskew A Boolean variable that indicates the enabling and disabling of the deskew process. Data may be discarded whenever deskew is enabled TRUE when deskew is enabled. FALSE when deskew is disabled
pma_ lane variable that holds the PMA lane number (0 to 3) received on lane x of the PMA service interface when faws_lock $x>=$ TRUE. The PMA lane number is determined by matching the received 22 symbol sequence to the values in one of the columms of Table $155-3$, interpreted with the most sig nificant bit transmitted first, modulo 4 . It is set to current pmal modulo 4 when the expected FAW
PMA_lane mapping © x
This variable indicates which PMA lane is received on lane x of the PMA service interface when faws _lock $x>=T R U E$, where $x=0.3$.
prev_pmal
A variable that holds the value of the lane identification octet (or the expected value of the lane identification octet) from the previous DSP super-frame. The value is intepreted with the most sigg-
nificant bit transmited firs. The lane represented is this value modulo 4 . It used to calculate the nificant bit transmitted first. The lane represented is this value modulo 4. It is used to calculate the
expected value of the lane identification octet in the next DSP super-fame period that is tested.
reset
Boolean variable that controls the resetting of the PMA sublayer. It is TRUE whenever a reset is
$\begin{gathered}\text { necessa } \\ \text { restart lock } \\ \text { Boolean }\end{gathered}$ sary mcluding when reset is initiated from the MDIO and during power on.
Boolean variable that is set by the PMA aligmment process to reset the synchronization
all PMA lanes. It is set to TRUE when 15 FAWs in a row fail to match (15_BAD state).
rx_align_status
signal ok \quad vanable that is set by the receive signal processing function (see 155.3.3.6)
Boo
oolean variable that is set based on the most recently received value of PMA:IS _IGNAL_indica tion (SIGNAL_OK). It is TRUE if the value was OK and FALSE if the value was FAII.
slip_done
Boolean variable that is set to TRUE when the SLIP requested by the DSP FAW synchronization state diagram has been completed indicating that the next candidate FAW position can be tested.
test_faw
Boolean variable that is set to TRUE when a candidate FAW position is available for testing and FALSE when the FIND_1ST state is entered.
155.4.1.2 Functions

AMP_COMPARE
FAW_COMPAR
This function compares the FAW with its expected value to determine if a valid frame aligment word sequence has been detected and retums the result of the companson using the variable faws
most significant it transmitted first) is equal to the prev_pmal plus 4 modulo 252 . Otherwise, SLIP

Causes the next candidate FAW position to be tested The precise method for determining the next candidate FAW position is not specified and is implementation dependent. However, an implementation shall ensure that all possible frame aligument word positions are evaluated.
155.4.1.3 Counters
amp_bad_count
Counts the number of consecutive AM blocks that don't match the expected value.
amp_counter
Counts the interval of 10240257 B blocks containing normal AM sequences.
Counts the number of uncorrected SC-FEC codewords. This counter is set to zero when an SC-FEC codeword is received and cw_ bad is false.
faws_ bad count
Counts the number of consecutive FAWs that don't match the expected value for a given PMA lane.
counter
faw_coumter
Counts the 181888 symbols between the starting position of one FAW and the expected starting position of the next FAW on a PMA lane. This countiter starts with a value of zero when start faw counter is asserted (at the position of the first symbol of a matched FAW pattern on a PMA
lane), is incremented for each symbol on that PMAlane, and reaches a terminal value of 181888 at the expected position of the next FAW pattem on that PMA lane.

155.4.1.4 State diagram

The PMA shall implement 4 DSP FAW synchronization processes as shown in Figure 155-13 to identify the boundaries of DSP super-frames by observing the stream of symbols on four physical lanes. The synchromization process operates independently on each lane. The synchronization state diagram determines when the PMA has detected the location of the frane
stream for a given lane of the PMA service interface.

The PMA shall also implement the deskew process as shown in Figure 155-14.
The PCS shall implement the aligmment marker lock process as shown in Figure 155-15 to identify the AM sequence at the start of each 400GBASE-ZR frame by observing data from the SC-FEC decoder output.

Comment \#9: Need management information at 155.5.

Defer to next meeting, pending decision on state machines (comment \#8)

Comment \#10: Need loopback information at 155.6.

Defer to next meeting, pending decision on state machines (comment \#8)

Comment \#11: Need PICs tables at 155.8.

Defer to next meeting, pending decision on state machines (comment \#8)

