

PMD Considerations

802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force

Rick Pimpinella, Panduit Corp.

September 29, 2020

Topics

- PMD Nomenclature
- Selecting an optical fiber type
- Selecting an optical connector type

IEEE 802.3 Ethernet Nomenclature

A Automotive

Ex. 5GBASE-AR

Selecting optical fiber

- Laser Optimized "Optical Multimode" fiber is required for these high speeds
- Millions of kilometers shipped annually
- Should specify OM3 to support the maximum reaches for lowest cost
- Include reaches over OM4/OM5 for future applications
- Enables use of current tables

Table 123–7—Optical fiber and cable characteristics

Description	OM3 ^a	OM4 ^b	OM5 ^c	Unit
Nominal core diameter	50			μm
Nominal fiber specification wavelength	850			nm
Effective modal bandwidth (min) ^d	2000	4700		MHz.km
Cabled optical fiber attenuation (max)	3.5			dB/km
Zero dispersion wavelength (λ_0)	$1295 \le \lambda_0 \le 1340$		$1297 \le \lambda_0 \le 1328$	nm
Chromatic dispersion slope (max) (S ₀)	$0.105 \text{ for } 1295 \le \lambda_0 \le 1310$ and $0.000375 \times (1590 - \lambda_0)$ for $1310 \le \lambda_0 \le 1340$		$-412/(840(1 - (\lambda_0/840)^4))$ for $1297 \le \lambda_0 \le 1328$	ps/nm ² km

^a IEC 60793-2-10 type A1a.2.

b IEC 60793-2-10 type A1a.3.

c IEC 60793-2-10 type A1a.4.

^d When measured with the launch conditions specified in Table 95-6.

Mode hopping

Bend insensitive glass optical fiber

Figure 4. Bend-Limiting Design

Corning Optical Communications
White Paper | CRR-519-AEN | Page 3

AUGUST 2007 | www.broadbandproperties.com | BROADBAND PROPERTIES | 17

Fiber optic cabling (channel) characteristics

- Reduce minimum reach from 0.5 to 0.1 due to the short reaches objectives for this application
- Primary medium should be OM3 for lowest cost
- We can specify OM4 reach once the power budget and transceiver parameters are determined

Example

PMD type	Required operating range		
2.5GBASE-AR	0.1 to 40 m for OM3 TBD for OM4		
	0.1 to 40 m for OM3		
5GBASE-AR	TBD for OM4		
10GBASE-AR	0.1 to 40 m for OM3		
	TBD for OM4		
25GBASE-AR	0.1 to 40 m for OM3		
	TBD for OM4		
50GBASE-AR	0.1 to 15 m for OM3		
	TBD for OM4		

Selecting a Connector Type Butt Coupling vs. Expanded Beam

Comparing bare minimum components

- 1. Ferrule
- 2. Ferrule holder
- 3. Glue tube
- 4. Spring

Plus component assembly & polishing

MOST Ferrule form factor

Can be molded as a single plastic part Integrates:

- 1. Lens
- 2. Ferrule

- No ferrule holder required
- No Assembly
- No Polishing

Utilize existing optical cable for MOST ferrule

- Low risk
- Reduced time to market

Replace HCS Specialty fiber with 50/125 μm OM3

Butt Coupled vs. Expanded Beam MDI

Butt Coupled

Pros

- Lowest Insertion Loss
- Deployed in high volume

Cons

- Higher cost than expanded beam
- Tight alignment tolerances
- Sensitive to contamination

Expanded Beam

Pros

- Lowest cost
- More reliable under adverse conditions
- Relaxed alignment tolerances
- Can be made to comply with existing MOST form factor – utilize adapters

Cons

Higher IL compared to Butt coupling

Example of specification for expanded beam

Description	nGBASE-AR	Unit
Beam diameter	1	mm
Maximum Insertion Loss	1.5	dB
Optical Return Loss (min)	20	dB
Lens-to-lens separation	0.1 to 5	mm

Summary

- The new PMDs can use the letter "A" nomenclature
- Standard OM3 fiber would be the best solution for lowest cost
- Manufacturers can make use of existing cable constructions developed for (MOST) HCS fiber – Not typically specified by IEEE
- High-speed channels are bandwidth limited and therefore, connector insertion loss is not an important parameter making expanded beam connectors the better choice
- Specifying the lowest cost optical connectivity can potentially be cheaper than the copper solution being specified in P802.3cy.
- Lowest cost optics will provide the automotive industry with the best connectivity solution (immunity to EMI, reduced weight, longer reach, etc.)

BACKUP

Connector ferrule critical dimensions

- 1. Ferrule outside diameter
- 2. Ferrule inside diameter
- 3. Circularity
- 4. Bore concentricity
- 5. Bore angular offset

Standards specified end face geometry

Critical specifications

- 1. Radius of curvature
- 2. Apex offset
- 3. Protrusion
- 4. Scratches
- 5. Cracks
- 6. Pits

Modeled Insertion Loss – Polymer Lens

Lateral offset IL measurement results

Axial offset IL measurement results

Angular misalignments

Alternative C-Lens design

C-Lens designed to minimize angular displacement

