PMD Considerations

802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force

Rick Pimpinella, Panduit Corp.
September 29, 2020

Topics

- PMD Nomenclature
- Selecting an optical fiber type
- Selecting an optical connector type

IEEE 802.3 Ethernet Nomenclature

10	$10 \mathrm{Mb} / \mathrm{s}$
100	$100 \mathrm{Mb} / \mathrm{s}$
1000	$1000 \mathrm{Mb} / \mathrm{s}$
10 G	$10 \mathrm{~Gb} / \mathrm{s}$
25 G	$25 \mathrm{~Gb} / \mathrm{s}$
40 G	$40 \mathrm{~Gb} / \mathrm{s}$
50 G	$50 \mathrm{~Gb} / \mathrm{s}$
100 G	$100 \mathrm{~Gb} / \mathrm{s}$
200 G	$200 \mathrm{~Gb} / \mathrm{s}$
400 G	$400 \mathrm{~Gb} / \mathrm{s}$

nTYPE-LLLm.x

[^0]Third letter

Selecting optical fiber

- Laser Optimized "Optical Multimode" fiber is required for these high speeds
- Millions of kilometers shipped annually
- Should specify OM3 to support the maximum reaches for lowest cost
- Include reaches over OM4/OM5 for future applications
- Enables use of current tables

Table 123-7-Optical fiber and cable characteristics

Description	OM3 ${ }^{\text {a }}$	OM4 ${ }^{\text {b }}$	OM5 ${ }^{\text {c }}$	Unit
Nominal core diameter	50			$\mu \mathrm{m}$
Nominal fiber specification wavelength	850			nm
Effective modal bandwidth (min) ${ }^{\text {d }}$	2000		4700	MHz.km
Cabled optical fiber attenuation (max)	3.5			$\mathrm{dB} / \mathrm{km}$
Zero dispersion wavelength (λ_{0})	$1295 \leq \lambda_{0} \leq 1340$		$1297 \leq \lambda_{0} \leq 1328$	nm
Chromatic dispersion slope (max) (S_{0})	$\begin{gathered} 0.105 \text { for } 1295 \leq \lambda_{0} \leq 1310 \\ \text { and } \\ 0.000375 \times\left(1590-\lambda_{0}\right) \\ \text { for } 1310 \leq \lambda_{0} \leq 1340 \end{gathered}$		$\begin{gathered} -412 /\left(840\left(1-\left(\lambda_{0} / 840\right)^{4}\right)\right) \\ \text { for } 1297 \leq \lambda_{0} \leq 1328 \end{gathered}$	$\underset{\mathrm{km}}{\mathrm{ps} / \mathrm{nm}^{2}}$

a IEC 60793-2-10 type A1a.2.
${ }^{\mathrm{b}}$ IEC 60793-2-10 type A1a. 3.
${ }^{c}$ IEC 60793-2-10 type A1a. 4
${ }^{\mathrm{d}}$ When measured with the launch conditions specified in Table 95-6.

Mode hopping

OM3 Glass
$L=300 \mathrm{~m},-0 \mu \mathrm{~m}$ offset
(-)
$\phi_{\text {eff }}=16.5 \mu \mathrm{~m}$
$L=300 \mathrm{~m}, 25 \mu \mathrm{~m}$ offset

50/125 $\mu \mathrm{m}$ POF
$L=300 \mathrm{~m}, 0 \mu \mathrm{~m}$ offset
$\phi_{\text {eff }}=43.5 \mu \mathrm{~m}$
$L=300 \mathrm{~m}, 25 \mu \mathrm{~m}$ offset

Bend insensitive glass optical fiber

Figure 4.
Bend-Limiting Design

Corning Optical Communications
White Paper | CRE-519-AEN | Page 3

Fiber optic cabling (channel) characteristics

- Reduce minimum reach from 0.5 to 0.1 due to the short reaches objectives for this application
- Primary medium should be OM3 for lowest cost
- We can specify OM4 reach once the power budget and transceiver parameters are determined

Example

PMD type	Required operating range
$2.5 G B A S E-A R$	0.1 to 40 m for OM 3 TBD for OM 4
$5 G B A S E-A R$	0.1 to 40 m for OM 3 TBD for OM 4
10GBASE-AR	0.1 to 40 m for OM3 TBD for OM 4
$25 G B A S E-A R$	0.1 to 40 m for OM 3 TBD for OM 4
$50 G B A S E-A R$	0.1 to 15 m for OM 3 TBD for OM 4

Selecting a Connector Type

Butt Coupling vs. Expanded Beam

Comparing bare minimum components

MOST Ferrule form factor

- No ferrule holder required
- No Assembly
- No Polishing

Utilize existing optical cable for MOST ferrule

- Low risk
- Reduced time to market

Lensed MOST ferrule

- Replace HCS Specialty fiber with $50 / 125 \mu \mathrm{~m}$ OM3

Butt Coupled vs. Expanded Beam MDI

Butt Coupled

Pros

- Lowest Insertion Loss
- Deployed in high volume

Cons

- Higher cost than expanded beam
- Tight alignment tolerances
- Sensitive to contamination

Expanded Beam

Pros

- Lowest cost
- More reliable under adverse conditions
- Relaxed alignment tolerances
- Can be made to comply with existing MOST form factor - utilize adapters

Cons

- Higher IL compared to Butt coupling

Trade low loss for low cost \& reliability under adverse conditions

Example of specification for expanded beam

Description	nGBASE-AR	Unit
Beam diameter	1	mm
Maximum Insertion Loss	1.5	dB
Optical Return Loss (min)	20	dB
Lens-to-lens separation	0.1 to 5	mm

Summary

- The new PMDs can use the letter "A" nomenclature
- Standard OM3 fiber would be the best solution for lowest cost
- Manufacturers can make use of existing cable constructions developed for (MOST) HCS fiber - Not typically specified by IEEE
- High-speed channels are bandwidth limited and therefore, connector insertion loss is not an important parameter making expanded beam connectors the better choice
- Specifying the lowest cost optical connectivity can potentially be cheaper than the copper solution being specified in P802.3cy.
- Lowest cost optics will provide the automotive industry with the best connectivity solution (immunity to EMI, reduced weight, longer reach, etc.)

BACKUP

Connector ferrule critical dimensions

1. Ferrule outside diameter
2. Ferrule inside diameter
3. Circularity
4. Bore concentricity
5. Bore angular offset

Standards specified end face geometry

Critical specifications

1. Radius of curvature
2. Apex offset
3. Protrusion
4. Scratches
5. Cracks
6. Pits

Modeled Insertion Loss - Polymer Lens

Without Index Matching Gel, Total Loss= 1.85dB
With Index Matching Gel, Total Loss= 1.05 dB

\square	Fresnel Fiber-Lens Interface
\square	Fresnel Lens Surface
\square	Absorption
\square	Curvature

Index matching gel

Lateral offset IL measurement results

Axial offset IL measurement results

Angular misalignments

Alternative C-Lens design

c-Lens designed to minimize angular displacement

[^0]: C Twin axial Copper
 E Extra long wavelength (1550nm)
 / Extended Reach
 F Fiber
 K BacKplane
 L Long wavelength (1310 nm)
 / Long reach
 S Short wavelength (850 nm)
 / Short reach
 T Iwisted pair
 Z Coherent optical interface for ITU-T G.709.2 compatible vendor \underline{Z}

