

Power System Parameter Examples

Michael Paul

12 November 2022

Calculated vs Simulated

32 nodes, Rconn = $300m\Omega$, Pnode=600mW, 22AWG Cable @ 65C, 100meters

- ▶ Relationship between T-connector resistance and Cable resistance is not intuitive
- Closed form equation for multi-drop power might not exist
 - Simplified calculations are very pessimistic
- ▶ Use spice to converge on solution
 - Spice will not converge if Barkhausen criterion is not met
- Need margin above Barkhausen criterion

Powering Trade-off

- >500mW / node required
 - Need enough power to start comms + small extra for simple sensors
- ▶ Trade off
 - PSE Voltage | Rpath | Node Count

Parameter Priorities

- ▶ Priorities for the following examples
 - 100m cables
 - Decent node counts w/ AWG22
 - Match traditional Ethernet for consistency
 - Smallest possible diameter (e.g. AWG22)
 - Maximize Node Count
 - >500mW Node
 - System Efficiency > 65%

Node Model

- ► Roonn is divided by 4 in each node
 - Represents contact resistance
 - Compensator Resistance
 - Etc.
- ►Rconn=300mΩ
 - <75m Ω per contact
- Need connector expert to validate this assumption

Searching for Min Vpse (24V system)

16 nodes, Rconn = $300m\Omega$, Pnode=600mW, 22AWG Cable @ 65C, 100meters

- Stepping Vpse from 26V to 20V by 1V
- System stops converging at 22V
- ► 23V system is getting too close to instability

Searching For Gauge

16 nodes, Rconn = $300m\Omega$, Pnode=500mW, 100meters

- ► Set Vpse,min = 24V
- ► Searching AWG 18, 20, 22, and 24
- ► AWG 24 did not converge

Searching for Max Delivered Power

16 nodes, Rconn = $300m\Omega$, 22AWG Cable @ 65C, 100meters, Vpse=24V

- ► Choose AWG 22 from last slide
- ► Search for power delivery > 500mW per node
- ► Can deliver 600mW @ 100m from 24V while meeting stability

Example 24V Setups

Parameter	Setup 1	Setup 2	Setup 3	Setup 4	units
Vpse,min	24	22	21	20	V
#Nodes	16	16	16	16	Nodes
Power / Node	600	500	500	600	mW
Cable Gauge	22	22	22	20	AWG
Connector Resistance	0.3	0.3	0.15	0.3	Ω
Length	100	100	100	100	m
Efficiency	66.5%	66.9%	65.4%	67.7%	V/V

Bold text shows differences from previous setups

50V System Example

32 nodes, Rconn = 300m Ω , 22AWG Cable @ 65C, 100meters, Vpse=50V

- ► Start with 24V system "Setup1"
- ► Change to Vpse_min = 50V
- ► Changed #Nodes to 32
 - 1PSE, 31PDs
- ► Can deliver up to 1.1W / Node
 - Ampacity of AWG 22 not high enough?
- Most conservative solution is to match 600mW solution from the 24V system

Example 50V Setup

Parameter	Setup 5	Setup6	Units
Vpse,min	50	50	V
#Nodes	32	32	Nodes
Power / Node	600	600	mW
Cable Gauge	22	24	AWG
Connector Resistance	0.3	0.3	Ω
Length	100	100m	m
Efficiency	85.4%	74%	V/V

Bold text shows differences from previous setups

Proposed Power Systems

Parameter	24V System	50V System	Units
Vpse,max	30	60	V
Vpse,min	24	50	V
Ipse	550mA	428mA	V
llimit	lpse * 1.2	lpse * 1.2	V
#Nodes	16	32	Nodes
Power / Node	600	600	mW
Cable Gauge	22	22	AWG
Connector Resistance	0.3	0.3	Ω
Length	100m	100m	m
Efficiency	66.5%	85.4%	V/V

Bold text shows differences between the two systems

12

Conclusion

- ▶ Power System has several degrees of freedom that are interrelated
- ▶ 802.3da needs to narrow the limits to progress in power design
- ► Two Voltage classes are proposed for 802.3da powered systems
- ▶ Is connector resistance estimation reasonable?