

T-Connector Resistance

Michael Paul

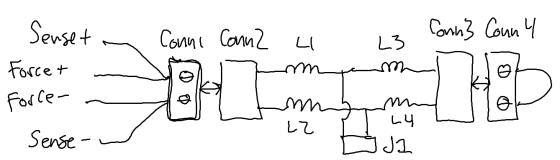
802.3da Topics for Honolulu

- ► T-Connector Resistance Update
 - Reallocate / increase power per node based on more realistic compensator resistance
- ▶ Unit Load Concept
 - How are physical attributes (Icouple, cnode, etc.) affected at different unit load levels
- ▶ Wake Signaling
 - Effects on Inductor Relative Cost
 - Attenuation (Rcable) effect on 625kHz
- ► Clause 169
 - Insert PSE Inrush State Machine
 - 169 Text updates for clarity, etc

Topic Relationships

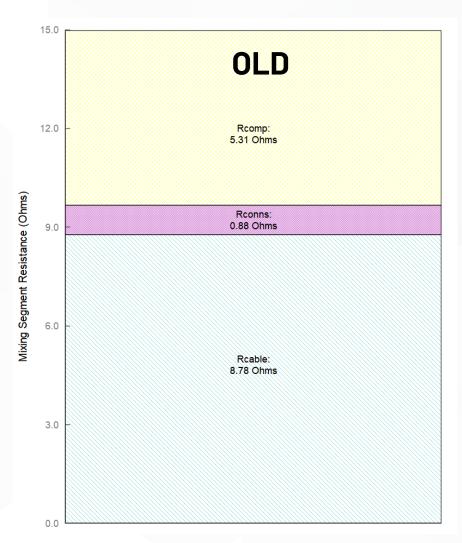
Topic	T-Conn Model	L - Coupling	Node Power	Voltage Thresholds
Clause169 Update	X	Χ	Χ	X
Wake Signaling		Χ	Χ	
Discovery Thresholds	X		Χ	X
T-Conn Resistance	X		X	X
Unit Load Concept	Χ	Χ	X	X

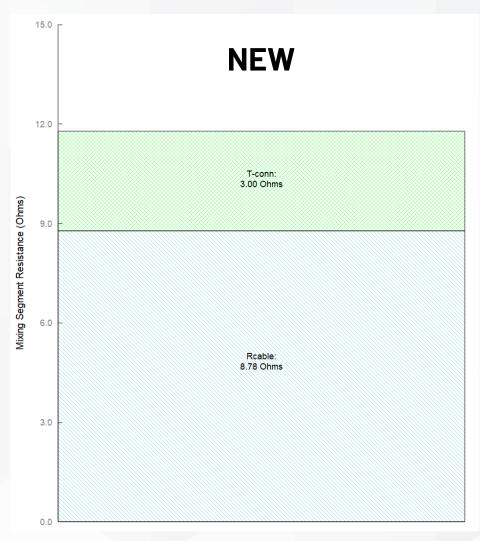
- ► Topic order for following presentations:
 - ► T-conn Resistance
 - ► Reallocate Node Power
 - ► Unit Load Concept
 - ▶ Wake Signaling
 - ► Clause 169 Update



T-Connector Resistance

T-Connector Resistance


- ► Reconfigure system based on updated t-connector resistance
- ► T-connector resistance components:
 - Compensator resistance (L1-L4)
 - Connector resistance (Conn1-Conn4)


- ▶ Compensator resistance
 - Number used in Paul_da_01_2023_08_30.pdf (355mΩ) is far too high
 - Realistic compensators will have negligible resistance (<10mΩ)
- ► What is appropriate connector resistance?
 - IEC63171 specifies one pin 50mΩ max
 - Measurements (not mine) have demonstrated < $10m\Omega$ per pin
- ► Set T-connector resistance to 200mΩ max
 - Assume compensator resistance << connector resistance
 - Assume 4-pins in one node reaching 50m0hm is improbable
 - Assume all nodes in the system approaching 200m0hm is impossible

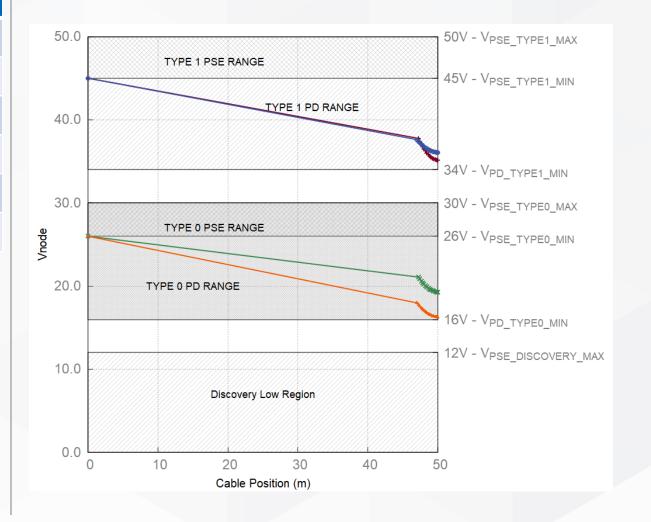
New Channel Resistance Stack-up Proposal

15 Ω Total, 433m Ω / Tconnector

 12Ω Total, $200m\Omega$ / Tconnector

With lower compensation resistance....

- ▶ Distribute gains as
 - Add another powered node to the mixing segment
 - (16 + 1) not (15+1)
 - More power per node
 - Change unit load in Type 0 to 1W (was 0.75W)


Proposed Operational Voltage Stack-Up

Param	Min	Max	Note
Vpse_type0	26V	30V	28.0V +/- 7.1%
Vpse_type1	45V	50V	47.5V +/- 5.3%
Ppd_type0		0.75W 1W	1U Device
Ppd_type1		2W	1U Device
Vpd_type0	18V 16V	30V	
Vpd_type1	34V	50V	

▶ Plot Key

Maroon -	15 MPDs	2.00W	413mΩ/node
■ Blue -	16 MPDs	2.00W	$200 m\Omega/node$
■ Green -	15 MPDs	0.75W	413 m Ω /node
Orange -	16 MPDs	1.00W	$200 \text{m}\Omega/\text{node}$

Thank You

