# Summary of Technical Feasibility Demonstrated for 100m OM4 MMF Links

Ramana Murty, Broadcom Vipul Bhatt, II-VI

November 10, 2020

## There is a VCSEL-limited & a Fiber-limited Regime for 100G per $\lambda$ over MMF

30m OM3 / 50m OM4: "VCSEL-limited"



Fiber adds a small penalty.



Fiber adds a significant penalty.

- Expressions for modal bandwidth from kolesar\_3cm\_01\_1118.pdf.
- 2. Chromatic dispersion parameters U0 = 1328 nm and S0 = 0.093477 ps/(nm<sup>2</sup>·km) for OM3 and OM4, abbott\_3db\_adhoc\_01\_080620.pdf.
- Reference king\_3cm\_adhoc\_01\_062818.pdf.

## **TDECQ: Model and Measurements**

ingham\_3db\_adhoc\_01a\_062520.pdf

- 30m OM3 / 50m OM4 adds small penalty.
   Fiber transmission adds little penalty "VCSEL-limited."
- 100m OM4 link feasible with 9+ tap Rx FFE.
   Fiber transmission adds significant penalty "Fiber-limited."

While TDECQ is below 4.5 dB with 9 Rx FFE taps, more margin would be needed for manufacturing. Continued VCSEL development should lead to the performance required for high volume production when the Standard is published.

|            | Link model                   |   |   |   |     |  |  |  |
|------------|------------------------------|---|---|---|-----|--|--|--|
| 8          |                              | ı |   | 1 |     |  |  |  |
| 7          | -                            |   |   |   | -   |  |  |  |
| 6          | -                            |   |   |   | -   |  |  |  |
| TDECQ (dB) | -                            |   |   |   | _   |  |  |  |
| O 4        | -                            |   |   | • | •   |  |  |  |
| <u> </u>   | -                            |   |   | • | • - |  |  |  |
| 2          | ,                            |   |   | • | -   |  |  |  |
| 1          | -                            |   |   |   | _   |  |  |  |
| 0          |                              | ı | 1 | ı |     |  |  |  |
|            | 0 20 40 60 80 100 length (m) |   |   |   |     |  |  |  |

امام مرماما

TDECQ versus OM4 link length for 5-tap Rx FFE (blue), 7-tap Rx FFE (cyan), 9-tap Rx FFE (green) and 23-tap Rx FFE (red)

If TDECQ is not measurable at a particular length, then a data point is not shown

#### Measurements (75°C)





## **Evidence of Technical Feasibility from BER Measurements**

lyubomirsky\_3db\_01\_1020.pdf

Pre-FEC BER below 2.4E-4 (KP4 FEC limit) for 100m OM4 transmission.

This experiment was designed to mimic the difficulty of using a linear interface, by adding 10 dB of ISI, while transmitting over 100m OM4 fiber with a 100G VCSEL.

However, in so-doing, it also provides an independent, experimental demonstration of Technical Feasibility of 100m over OM4.



### Differentiation of the PMDs

#### **Specifications**

Reference equalizer BT filter represents the combination of anti-aliasing filter (26.5625 GHz) and the effective fiber bandwidth.

Other potential differences for a low cost PMD1: Max RMS spectral width Minimum OMA (for max TDECQ) MPN penalty

murty\_3db\_adhoc\_01a\_100120.pdf

| Parameter                                                   | PMD1         | PMD2         | Units      | Notes |
|-------------------------------------------------------------|--------------|--------------|------------|-------|
| MMF                                                         | OM3          | OM4          |            | 1     |
| Link length                                                 | 30           | 100          | m          | 2     |
| Fiber attenuation                                           | 0.1          | 0.3          | dB         |       |
| Reference equalizer BT filter<br>Uw = 0.6 nm<br>Uw = 0.5 nm | 21.9<br>22.2 | 14.7<br>15.7 | GHz<br>GHz | 3     |

For testing transmitter compliance

#### **Relative Cost**

Benefit to defining two PMDs is that a wide range of VCSEL cost evolution scenarios can be accounted for.

PMD2 / PMD1

