146.5.4.2 Transmitter output droop

With the transmitter in test mode 2 and using the transmitter test fixture shown in Figure 146-20,:

- When a Clause 104 Type E PSE or PD PI is not encompassed within the MDI, the magnitude of both the positive and negative droop shall be less than 10% measured with respect to an initial value at 133.3 ns after the zero crossing and a final value at 800 ns after the zero crossing.
- When a Clause 104 Type E PSE or PD PI is encompassed within the MDI, the magnitude of both the positive and negative droop shall be less than 25% measured with respect to an initial value at 133.3 ns after the zero crossing and a final value at 800 ns after the zero crossing. For applications such as those shown in Annex 146A, implementers should consider transmitter amplitude limitations.

146.8.3 MDI return loss

When a Clause 104 Type E PSE or PD PI is not encompassed within the MDI, t7he MDI return loss (RL) shall meet or exceed Equation (146-17a) for all frequencies from 100 kHz to 20 MHz (with $100 \Omega \pm 0.1 \%$ reference impedance) at all times when the PHY is transmitting data or idle symbols.

Return Loss $(f) \geq\left\{\begin{array}{ll}20-18 \times \log _{10}\left(\frac{0.2}{f}\right) d B & 0.1 \leq f<0.2 \mathrm{MHz} \\ 20 d B & 0.2 \leq f<1 \mathrm{MHz} \\ 20-16.7 \times \log _{10}(f) d B & 1<f \leq 10 \mathrm{MHz} \\ 3.3-7.6 \times \log _{10}\left(\frac{f}{10}\right) d B & 10<f \leq 20 \mathrm{MHz}\end{array}\right\}$
where f is the frequency in MHz .
When a Clause 104 Type E PSE or PD PI is encompassed within the MDI, the MDI return loss (RL) shall meet or exceed Equation (146-17b) for all frequencies from 100 kHz to 20 MHz (with $100 \Omega \pm 0.1 \%$ reference impedance) at all times when the PHY is transmitting data or idle symbols.
$\operatorname{Return} \operatorname{Loss}(f) \geq\left\{\begin{array}{ll}20-18 \times \log _{10}\left(\frac{0.5}{f}\right) d B & 0.1 \leq f<0.5 \mathrm{MHz} \\ 20 d B & 0.5 \leq f<1 \mathrm{MHz} \\ 20-16.7 \times \log _{10}(f) d B & 1<f \leq 10 \mathrm{MHz} \\ 3.3-7.6 \times \log _{10}\left(\frac{f}{10}\right) d B & 10<f \leq 20 \mathrm{MHz}\end{array}\right\}$
where f is the frequency in MHz .

