RS-FEC with error bursts at 200G/lane compared to earlier rates

Adee Ran, Cisco

Supporters

Will Bliss
 Broadcom

Vasudevan Parthasarathy Broadcom

Introduction

- A popular architecture in 100G SerDes includes a single-tap DFE and a longer FFE.
 This architecture is likely to be used with some 200G SerDes as well.
 - Typically assumed for high-loss electrical links, but also used in some optical receivers.
- When using PAM4 modulation, a single-tap DFE can cause error bursts (contiguous sequences of PAM4 symbol errors) due to error propagation.
- RS-FEC is considered resilient to burst errors (no impact if a burst stays within one FEC symbol) but with bit-muxing PMAs, error bursts can corrupt increasing number of FEC symbols (depending on muxing ratio) and degrade the FEC performance.
- Precoding (as defined in 135.5.7.2) can be used to mitigate error bursts.
 - Not specified with optical and C2M.
- This presentation examines the effect of error propagation with bit-muxing to 200G/lane for the 200GBASE-R, 400GBASE-R, and the proposed 800GBASE-R PCSs.

May 18 2022 IEEE P802.3df 3/16

Some terminology used in this presentation

- PAM4 symbol (2 bits)
 - NRZ symbol (1 bit)
- Burst of length L a sequence of L symbols which are received incorrectly
- FEC symbol (10 bits)
- FEC codeword or CW (n FEC symbols) correctable if up to t symbol errors occur, otherwise uncorrectable, and its whole content is discarded.
 - In clause 119 n=544 and t=15.
 - Codewords are distributed to PCS lanes symbol-by-symbol in a checkerboard pattern.
- DER = detector error ratio (PAM4 symbol errors)
 - SER = FEC symbol error ratio
 - CER = FEC codeword error ratio
- FLR = Frame loss ratio

Error model

- Every burst starts with a random error that occurs with probability $p_{initial} = DER$.
- Receiver with 1-tap DFE
 - Gilbert model; probability of propagation denoted a
 - With PAM4, $0 \le a \le 0.75$
- Consider two cases:
 - 1. Without precoding
 - Error propagation creates bursts of length L with probability $p_{initial} \cdot a^L (1-a)$
 - Every PAM4 symbol in the burst has either incorrect MSB or incorrect LSB (ignoring low probability event that both are incorrect)
 - Errors are twice as likely to occur in the LSB than in the MSB (see anslow 3ck adhoc 01 072518, slide 11)
 - 2. With precoding
 - Every burst creates two incorrect PAM4 symbols; the initial random error and an additional error with distance L UI from the initial error, with probability $p_{initial} \cdot a^{L-1}(1-a)$
 - Errors occur equally likely in the LSB or the MSB (due to the removal of precoding)

Recall: 200GBASE-R PCS (Clause 119) with 8 physical lanes (25G NRZ)

When data is
transmitted over 8
physical lanes
(NRZ), the bits on
each lane comprise
FEC symbols, and
bursts usually
corrupt only 1 FEC
symbol (or 1+1 due
to CW interleaving)

To corrupt 2
symbols of the
same CW, a burst
has to be at least
12 UI long.
3 symbols in one
CW require 32
UI, etc.

Excerpt from Figure 119–10—200GBASE-R Transmit bit ordering and distribution

Recall: 200GBASE-R PMA (Clause 120)

- Uses bit-muxing of multiple PCS lanes, as originally introduced in 802.3ba (clause 83 PMA and clause 82 PCS)
 - At the time, physical lanes used NRZ modulation
 - Bit-muxing enables handling of skew (static and dynamic) between lanes and reordering of lanes when using multiple physical lanes
 - Also works with gearboxes when higher signaling rate is used on the wire
 - Also works when pairs of PCS lanes are muxed into PAM4 physical lanes.
- Many newer devices implement bit-muxing internally without skew and with known order
 - For example, a 50G/100G PAM4 SerDes co-located with the PCS always transmits the same group of PCS lanes in the same order
 - Also, PAM4 bit grouping is deterministic, and gearboxes are likely to keep bit-pairs together.
 - In the following slides, muxing order and PAM4 pairing are shown as if bit-muxing is colocated with the PCS. The results with other choices would be equivalent.

200GBASE-R with 50G/lane signaling

z=8 PCSLs, 2-way CW interleaving (color indicates CW A or B)

6	6	5	4	3	2	1	0
149	149	139	129	119	109	99	89
148	148	138	128	118	108	98	88
147	147	137	127	117	107	97	87
146		136	126	116	106	96	86
145	145	135	125	115	105	95	85
144	144	134	124	114	104	94	84
143		133	123	113	103	93	83
142	142	132	122	112	102	92	82
141	141	131	121	111	101	91	81
140	140	130	120	110	100	90	80
69	69	59	49	39	29	19	9
68	68	58	48	38	28	18	8
67	67	57	47	37	27	17	7
66	66	56	46	36	26	16	6
65	65	55	45	35	25	15	5
64	64	54	44	34	24	14	4
63	63	53	43	33	23	13	3
62	62	52	42	32	22	12	2
61	61	51	41	31	21	11	1
60	60	50	40	30	20	10	0

When bit-muxed to n=4 physical lanes (50G PAM4)

	0	1	2	3
41	(81,91)	(101,111)	(121,131)	(141,151)
40	(80,90)	(100, 110)	(120,130)	(140,150)
39	(9,19)	(29,39)	(49,59)	(69,79)
38	(8,18)	(28,38)	(48,58)	(68,78)
			:	:
3	(3,13)	(23,33)	(43,53)	(63,73)
2	(2,12)	(22,32)	(42,52)	(62,72)
1	(1,11)	(21,31)	(41,51)	(61,71)
0	(0,10)	(20,30)	(40,50)	(60,70)
_				

Without precoding:

- A single error corrupts one FEC symbol
- Bursts with $2 \le L \le 11$ corrupt up to 2 FEC symbols per CW (2 if FEC symbol boundary is crossed)
- Bursts with $11 < L \le 20$ corrupt up to 3 FEC symbols per CW...

With precoding:

- A single error corrupts:
 - Two FEC symbols in the same CW w.p. $\frac{1}{2} \cdot \frac{1}{10} = 0.05$
 - One FEC symbol in each CW w.p. 0.5
 - Only one FEC symbol w.p. $1 \frac{1}{2} \frac{1}{20} = 0.45$
- Longer bursts corrupt 1 or 2 FEC symbols in the "starting" CW, and 0 or 1 in the other CW.

200GBASE-R with 100G/lane signaling

z=8 PCSLs, 2-way CW interleaving (color indicates CW A or B)

0	1	2	3	4	5	6	7
89	99	109	119	129	139	149	159
88	98	108	118	128	138	148	158
87	97	107	117	127	137	147	157
86	96	106	116	126	1 36	146	156
85	95	105	115	125	135	145	155
84	94	104	114	124	134	144	154
88	93	103	113	123	133	143	153
82	92	102	112	122	132	142	152
81	91	101	111	121	131	141	151
80	90	100	110	120	130	140	150
9	19	29	39	49	59	69	79
8	18	28	38	48	58	68	78
7	17	27	37	47	57	67	77
6	16	26	36	46	56	66	76
5	15	25	35	45	55	65	75
4	14	24	34	44	54	64	74
3	13	23	33	43	53	63	73
2	12	22	32	42	52	62	72
1	11	21	31	41	51	61	71
0	10	20	30	40	50	60	70

When bit-muxed to n=2 physical lanes (100G PAM4)

Without precoding:

- A single error corrupts one FEC symbol
- Bursts with $L \le 8$ can corrupt L FEC symbols, up to 4 symbols in each CW (considering FEC symbol boundary crossing)
- Bursts with $8 < L \le 20$ corrupt up to 4 FEC symbols per CW
- To corrupt n > 4 symbols in one CW, $L > 20 \left| \frac{n}{4} \right|$ is required

With precoding:

- A single error corrupts:
 - Two FEC symbols in the same CW w.p. $\frac{1}{2}$
 - One FEC symbol in each CW w.p. $\frac{1}{2}$
 - The probability of corrupting only one FEC symbol in one CW is 0
- Longer bursts corrupt 1 or 2 FEC symbols in the "starting" CW, and 0 or 1 in the other CW.

	0	1
43	(121, 131)	(141,151)
42	(81,91)	(101,111
41	(120,130)	(140,150
40	(80,90)	(100,110
39	(49,59)	(69,79)
38	(9,19)	(29,39)
37	(48,58)	(68,78)
36	(8,18)	(28,38)
		:
5	(42,52)	(62,72)
4	(2,12)	(22,32)
3	(41,51)	(61,71)
2	(1,11)	(21,31)
1	(40,50)	(60,70)
0	(0,10)	(20,30)

200GBASE-R with 200G/lane signaling

z=8 PCSLs, 2-way CW interleaving (color indicates CW A or B)

0	1	2	3	4	5	6	7
	1	109	5 446	129	3	149	150
89 88	99	109	110	128	199	148	150
87	97	107	117	127	127	147	157
86	96	106	116	126	126	146	156
85	95	105	115	125	125	145	155
84	94	104	114	124	134	144	154
83	93	103	113	123	133	143	153
82	92	102	112	122	132	142	152
81	91	101	111	121	131	141	151
80	90	100	110	120	130	140	150
9	19	29	39	49	59	69	79
8	18	28	38	48	58	68	78
7	17	27	37	47	57	67	77
6	16	26	36	46	56	66	76
5	15	25	35	45	55	65	75
4	14	24	34	44	54	64	74
3	13	23	33	43	53	63	73
2	12	22	32	42	52	62	72
1	11	21	31	41	51	61	71
0	10	20	30	40	50	60	70

When bit-muxed to n=1 physical lanes (200G PAM4)

Without precoding:

- Single error corrupts one FEC symbol
- • Bursts with $L \leq 16$ can corrupt L FEC symbols, up to 8 symbols in each CW
- Bursts with $16 < L \le 40$ corrupt up to 8 FEC symbols per CW
- To corrupt n > 8 symbols in one CW, $L > 40 \left| \frac{n}{8} \right|$ is required

With precoding:

- For a single error:
 - The probability of corrupting two FEC symbols is in the same CW is $\frac{1}{2}$
 - The probability of corrupting one FEC symbol in each CW is $\frac{1}{2}$
 - The probability of corrupting only one FEC symbol in one CW is 0
- Longer bursts corrupt 1 or 2 FEC symbols in the "starting" CW, and 0 or 1 in the other CW

```
45
      (101, 1
43
      (140,1
42
      (120,1
41
      (100,110
40
      (80,90)
39
       (69,79)
38
       (49,59)
37
       (29,39)
36
       (9,19)
35
       (68,78)
34
       (48,58)
33
       (28,38)
32
       (8,18)
       (60,70)
       (40,50)
       (20,30)
       (0,10)
```

400GBASE-R

Essentially the same as 200G: z=16 PCSLs and 2× physical lanes

May 18 2022 IEEE P802.3df 11/16

400GBASE-R

Essentially the same as 200G: z=16 PCSLs and 2× physical lanes

Serialized to n=2 physical lanes (200G PAM4)

	0	1
47	(281, <mark>291</mark>)	(301, <mark>311</mark>)
46	(241,: <mark>251)</mark> (201,: <mark>211</mark>)	(261, <mark>271</mark>)
45	(201, <mark>211</mark>)	(221, <mark>231</mark>)
44		(181, <mark>191</mark>)
43	(280, <mark>29</mark> 0)	(300, <mark>310)</mark>
42	(240, <mark>250</mark>)	(260, <mark>270</mark>)
41	(200, <mark>210</mark>)	(220, <mark>230</mark>)
40	(160, 170)	(180, <mark>190</mark>)
39	(129, 139)	(149, 159)
38	(89, 99)	(109, 119)
37	(49, 59)	(69, 79)
36	(9, 19)	(29, 39)
35	(1 28 , 138)	(148, 158)
34	(88, 98)	(108, 118)
33	(48, 58)	(68, 78)
32	(8, 18)	(28, 38)
2	(80, 90)	(100, 110)
1	(40, 50)	(60, 70)
0	(0, 10)	(20, 30)

800GBASE-R (assumed)

Assuming two z=16 PCSs, with a similar analysis as for 400G:

- If each PCS uses a separate set of physical lanes same results as in 400G (both 100G/lane and 200G/lane)
- If the PMA bit-muxes all 32 PCSLs across physical lanes (4-way codeword interleaving) on each, the results are still essentially the same
 - Higher interleaving helps with long bursts (>20 UI with 100G/lane)
 - However, shorter bursts can still cause several FEC symbol errors in the same CW (up to 4+4 with 100G/lane, up to 8+8 with 200G/lane)

May 18 2022 IEEE P802.3df 13/16

Summary

Number of FEC symbols that can be corrupted by a single burst of length L

Physical lanes and Signaling rate	Without precoding		With precoding		
Filysical lattes affu Signating rate	L=1	L=16	L=1	L=16	
<u>8×25G NRZ</u>	1	Up to 2 per codeword	Up to 1 per codeword	Up to 1 per codeword	
4×50G PAM4 or 8×50G PAM4	1	Up to 3 per codeword	Up to 2 per codeword (usually 1+0 or 1+1)	Up to 2 per codeword (2+0, 1+1 or 1+0)	
2×100G PAM4, 4×100G PAM4, or 8×100G PAM4	1	Up to 4 per codeword	Up to 2 per codeword (always 2+0 or 1+1)	Up to 2 per codeword (2+0, 1+1 or 1+0)	
1×200G PAM4, 2×200G PAM4, or 4×200G PAM4	1	Up to 8 per codeword	Up to 2 per codeword (always 2+0 or 1+1)	Up to 2 per codeword (2+0, 1+1 or 1+0)	

The effect of long bursts without precoding becomes more significant at 200G/lane – it is similar to that of single-lane muxing with clause 91 FEC (not analyzed here).

When error propagation is expected, precoding is likely preferred over no precoding.

Future work

- Analyze FLR vs. FEC input BER for various values of a (error propagation probability)
 - With and without precoding
- Should we make any changes?

Thank you

Questions?