Exploration feasibility of 200 Gbps/Lane using Diff PAM4 and SE PAM4

Dan Cunio, Shaul BenHaim, Iris Shtrasler, Yan Zhuang, Yuchun Lu, Leon Bruckman **Huawei**

November 2022

www.huawei.com

Objectives of the presentation

- We explore the feasibility of 224 Gbps/Lane using Diff PAM4 and SE PAM4 modulations for different 802.3ck and 802.3df channels.
- Demonstrating that for some channels SE PAM4 gives better performance than differential PAM4
 - For this goal, the SNR that is required to achieve a certain SER of 10⁻⁴ is calculated for selected channels
 - The SER comparison between the two methods includes FEXT and NEXT crosstalk channels.
- Pointing out the channels for which SE PAM4 would be a better fit
- Using Single-Ended PAM4 modulation might help in supporting high IL channels and saving power for 224 Gbps/lane chip communications.

Simulation Setup

Channel Scenarios

IEEE 802.3.ck channels							
Channel Number	Channel name	Channel contributor	FEXT Channels	NEXT Channels			
		Jane Lim					
1	100G C2C-S Channels Estimate 16-18dB channels	Arturo Pachon	2	2			
1	100G C2C-3 Chainleis Estimate 10-160B Chainleis	Pirooz Tooyserkani		2			
		(14-July-2019)					
2	New Chip to module channel simulation and analysis	Nathan Tracy	5	0			
2	New Chip to module channel simulation and analysis	(11-Nov-2019)	5				
		Alex Haser					
3	BP OD Channel Analysis	Tom Palkert	5	3			
		(14-Jan-2020)					
	IEEE 802.3.df channels						
	Channel name	Channel contributor	FEXT Channels	NEXT Channels			
4-6	212 Gb/s PAM4 per Lane C2M Channels - Orthogonal 19mil ,67mil, 93mil channel	Rick Rabinovich	1	1			
4-6	212 Gb/s PAM4 per Lane Czivi Channels - Orthogonal 19mii ,67mii, 93mii Channel	(19-Sept-2022)					
	Chia to Chia (CCC) Manazzina Tart David Changela	Rich Mellitz	3	0			
7		Brandon Gore					
	Chip to Chip (C2C) Mezzanine Test Board Channels	Tom Palkert					
		(July 2022)					
8-12		Femi Akinwale					
		Kusuma Matta					
		Oleg Kashurkin					
	Channel Models for 200 Gbps Lane AUI C2M 93ohms, 20:2:28 dB channel	Cesar Mendez-Ruiz	1	2			
		Howard Heck					
		Francisco Olguin Tellez					
		(19-Sept-2022)					
		Femi Akinwale					
		Kusuma Matta	1				
13-17		Oleg Kashurkin					
	Channel Models for 200 Gbps Lane AUI C2M 100ohms, 20:2:28 dB channel	Cesar Mendez-Ruiz		2			
		Howard Heck					
		Francisco Olguin Tellez					
		(19-Sept-2022)					

- Channels 1-3 were taken from web site "IEEE P802.3ck Task Force Tools and Channels": https://www.ieee802.org/3/ck/public/tools/index.html
- Channels 4-17 were taken from web site "IEEE P802.3df 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force Tools and Channel Data Area" https://www.ieee802.org/3/df/public/tools/index.html

IEEE 802.3ck 200 Gbps Channels

Channels 1-3

IEEE.ck channels										
Channel Number	Channel name	Channel contributor	FEXT Channels	NEXT Channels	Diff PAM 4 SER 200 Gbps @ 1e-4	SE PAM 4 SER 200 Gbps @ 1e-4	Delta	IL @ 28 GHz	IL @ 56 GHz	
		Jane Lim								
		Arturo Pachon								
		Pirooz Tooyserkani							i	
1	100G C2C-S Channels Estimate 16-18dB channels	(14-July-2019)	2	2	35.5 dB	29.5 dB	6 dB	-20.6	-34	
		Nathan Tracy								
2	New Chip to module channel simulation and analysis	(11-Nov-2019)	5	0	33 dB	28.5 dB	4.5 dB	-15.8	-22.1	
		Alex Haser			E2 4D @ 4+ 2	22 dp @ 4 - 2	10 dp @ 1 - 3			
	BP OD Channel Analysis	Tom Palkert	5	5	3	52 dB @ 1e-3	33 dB @ 1e-3 36 dB @ 1e-4	19 dB @ 1e-3		i
3		(14-Jan-2020)			NA @ 1e-4	36 GB @ 1e-4	NA @ 1e-4	-31.4	-60.2	

CH1 SER Vs. SNR

CH2 SER Vs. SNR

CH3 SER Vs. SNR

CH2 Es/N0 Vs. Data rate

CH2 difference SER @ 1e-4 between SE PAM4 and Diff PAM4

IEEE.CK channels summary

- SE performs better for all 802.3ck channels
- Difference of 6dB in low IL channels and > 10 dB for high IL channels

IEEE 802.3df 224 Gbps Channels

Channels 4-7

	Channel name	Channel contributor	FEXT Channels	NEXT Channels	Diff PAM 4 SER 200 Gbps @ 1e-4	SE PAM 4 SER 200 Gbps @ 1e-4	Delta
24	212 Gb/s PAM4 per Lane C2M Channels - Orthogonal 19mil channel	Rick Rabinovich					
4		(19-Sept-2022)	1	1	26.7 dB	24 dB	2.7 dB
5 212 Gb/s PAM4 per Lai	Gb/s PAM4 per Lane C2M Channels - Orthogonal 67mil channel	Rick Rabinovich					
	212 Gb/s PAIN4 per Lane Czivi Channers - Orthogonal 6/min Channer	(19-Sept-2022)	1	1	27.5 dB	24.3 dB	3.2 dB
6 212 Gb/s PAM4 pe	212 Gb/s PAM4 per Lane C2M Channels - Orthogonal 93mil channel	Rick Rabinovich					
	212 Gb/s PAIN4 per Lane Czivi Channers - Orthogonal 95mii Channer	(19-Sept-2022)	1	1	27.9 dB	24.5 dB	3.4 dB
	Chip to Chip (C2C) Mezzanine Test Board Channels	Rich Mellitz					
Chip		Brandon Gore	3	0	31.5 dB	30 dB	1.5 dB
		Tom Palkert		U	31.3 UB	30 UB	1.5 UB
7		(July 2022)					

CH5 SER Vs. SNR

- SE performs better all channels
- For channels 4, 5, 6 both SE and differential have high margin from SNR limit

Rick Rabinovich February 24, 2022 67mil channel

Channels 8-17

- For high IL channels, differential implementation does not pass COM
- SE advantage increases with high IL

Femi Akinwale, Cesar Mendez-Ruiz, Arturo Pachon, Kusuma Matta and Howard Heck. Channel 26 dB, 93 ohm

Summary results 802.3df channels

- For channels 4-6 both SE and differential have good results and have high margin from SNR limit
- For channels 7-17 which are important corner cases, SE performs better results than differential

Conclusions and summary

- It was demonstrated that SE PAM4 has clear advantage over Diff PAM4 for some channels
- In general, differential pair is the implementation of choice for channels with high XTK and low IL, and SE PAM4 is the preferred choice for channels with low XTK and high IL.
 - Similarly, the advantage of SE increases with BW.
- The Diff PAM4 implementation requires low IL channels. Such channels needs higher design effort and are more expensive.
- Based on these results we propose to consider SE PAM4 implementation in addition to Diff PAM 4 implementation.

QA

Thank you!

Appendix

Channels IL

channel no.	IL @ 28GHz [dB] for SE	IL @ 56GHz [dB] for Diff	Notes	Channel Name	Channel Contributor
#1	-20.6	-34	ck	100G C2C-S Channels Estimate 16-18dB channels	Jane Lim Arturo Pachon Pirooz Tooyserkani (14-July-2019)
#2	-15.8	-22.1	ck	New Chip to module channel simulation and analysis	Nathan Tracy (11-Nov-2019)
#3	-31.4	-60.2	ck	BP OD Channel Analysis	Alex Haser Tom Palkert (14-Jan-2020)
#4 19mil	-6.3	-13	df	212 Gb/s PAM4 per Lane C2M Channels - Orthogonal 19mil channel	Rick Rabinovich (19-Sept-2022)
#5 67mil	-6.9	-15.6	df	212 Gb/s PAM4 per Lane C2M Channels - Orthogonal 67mil channel	Rick Rabinovich (19-Sept-2022)
#6 93mil	-7.3	-19.3	df	212 Gb/s PAM4 per Lane C2M Channels - Orthogonal 93mil channel	Rick Rabinovich (19-Sept-2022)
#7	-14	-25.9	df	Chip to Chip (C2C) Mezzanine Test Board Channels	Rich Mellitz Brandon Gore Tom Palkert (July 2022)
#8 12dB	-8.2	-12.3	df	Channel Models for 200 Gbps Lane AUI C2M 93ohms, 12 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#9 16dB	-11.3	-17.4	df	Channel Models for 200 Gbps Lane AUI C2M 93ohms, 16 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#10 20dB	-13.3	-20.7	df	Channel Models for 200 Gbps Lane AUI C2M 93ohms, 20 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#11 24dB	-16	-25.2	df	Channel Models for 200 Gbps Lane AUI C2M 93ohms, 24 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#12 28dB	-18.7	-29.3	df	Channel Models for 200 Gbps Lane AUI C2M 93ohms, 28 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#13 12dB	-7.9	-12.9	df	Channel Models for 200 Gbps Lane AUI C2M 100ohms, 12 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#14 16dB	-10.9	-17.3	df	Channel Models for 200 Gbps Lane AUI C2M 100ohms, 16 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#15 20dB	-13.2	-21.1	df	Channel Models for 200 Gbps Lane AUI C2M 100ohms, 20 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#16 24dB	-15.9	-25.2	df	Channel Models for 200 Gbps Lane AUI C2M 100ohms, 24 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)
#17 28dB	-18.7	-29.5	df	Channel Models for 200 Gbps Lane AUI C2M 100ohms, 28 dB channel	Femi AkinwaleKusuma MattaOleg KashurkinCesar Mendez-RuizHoward HeckFrancisco Olguin Tellez (19-Sept-2022)