Statistical approach to chromatic dispersion

Earl Parsons, PhD
CommScope

Introduction

- Chromatic dispersion penalty increases with square of baud rate
- For 200G lanes we need to consider chromatic dispersion parameters
 - Zero dispersion wavelength (lambda0)
 - Zero dispersion slope (S0)
- This contribution does not propose a new fiber definition or change to existing fiber parameters
- Ethernet standard references ITU-T fiber types, parameters in ITU-T and IEEE should be consistent
- A new fiber type needs to be standardized in ITU-T before reference here
- Any deviation from ITU-T specifications in our standard will create confusion in the market
- A statistical approach to chromatic dispersion reveals that extreme dispersion cases are unlikely

Example: Clause 151 (802.3cu)

151.11.1 Optical fiber cable

The optical fiber cable requirements are satisfied by cables containing ITU-T G.652.B (dispersion unshifted), type G.652.D (low water peak, dispersion unshifted), or type G.657.A1, or type G.657.A2 (bend insensitive) fibers, or the requirements in Table 151–14 where they differ.

Table 151-14—Optical fiber and cable characteristics

Description	Value	Unit
Nominal fiber specification wavelength	1310	nm
Cabled optical fiber attenuation (max)	0.47 ^a or 0.5 ^b	dB/km
Zero dispersion wavelength (λ_0)	$1300 \le \lambda_0 \le 1324$	nm
Dispersion slope (max) (S ₀)	0.092	ps/nm² km

^a The 0.47 dB/km at 1264.5 nm attenuation for optical fiber cables is derived from Appendix I of ITU-T G.695.

Dispersion usually calculated using worst case

Table 151–13—Fiber optic cabling (channel) characteristics

Description	400GBASE-FR4	400GBASE-LR4-6	Unit
Operating distance (max)	2	6	km
Channel insertion loss ^{a, b} (max)	4	6.3	dB
Channel insertion loss (min)	0	0	dB
Positive dispersion ^b (max)	6.6	19.9	ps/nm
Negative dispersion ^b (min)	-11.7	-35.2	ps/nm
DGD_max ^e	2.3	4	ps
Optical return loss (min)	25	22	dB

^a These channel insertion loss values include cable, connectors, and splices.

$$D\left(\frac{p_S}{nm}\right) = \frac{S_0}{4} \left[\lambda - \frac{{\lambda_0}^4}{\lambda^3}\right] L$$

b The 0.5 dB/km attenuation is provided for Outside Plant cable as defined in ANSI/TIA 568-C.3.

[•] Instead, we can take a statistical approach

For 10 km with LAN WDM grid (1294.6 to 1310.1 nm)

^{• -28.0} to +9.2 ps/nm dispersion worst case

^b Over the wavelength range 1264.5 nm to 1337.5 nm for 400GBASE-FR4 and 400GBASE-LR4-6.

^e Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system is required to tolerate.

Monte Carlo simulations, 100,000 scenarios

Basic assumptions

- Length: 10 km, single fiber
- Short wavelength:
 - Truncated normal distribution
 - 1295.6 nm +/- 1 nm, 3 sigma
- Long wavelength:
 - Truncated normal distribution
 - 1309.1 nm +/- 1 nm, 3 sigma
- Lambda0:
 - Truncated normal distribution
 - 1312 nm +/- 12 nm, 3 sigma
- S0:
 - Truncated normal distribution
 - 0.09 ps/(nm^2*km) +/- .002, 3 sigma

Realistic fiber parameters

- Length: 10 km, single fiber
- Short wavelength:
 - Truncated normal distribution
 - 1295.6 nm +/- 1 nm, 3 sigma
- Long wavelength:
 - Truncated normal distribution
 - 1309.1 nm +/- 1 nm, 3 sigma
- Lambda0:
 - Truncated normal distribution
 - 1313.4 nm +/- 2.6 nm, 3 sigma
- S0:
 - Truncated normal distribution
 - 0.086 ps/(nm^2*km) +/- .000879, 3 sigma

Unlikely to see -28 or +9.2 ps/nm

25 25 23 23 24 25 25 27		위 다 다 약 다 Dispersion (ps
Realistic]	
Short Wavelength		
Max	-6.92889	
Min	-24.224	
Mean	-15.7721	
Std Dev	2.358467	
Mean+3 Sigma	-8.7	ps/nm
Mean-3 Sigma	-22.8	ns/nm

Basic		
Short Wavelength		_
Max	-3.4576	
Min	-27.1133	
Mean	-15.107	
Std Dev	3.699438	
Mean+3 Sigma	-4.0	ps/nm
Mean-3 Sigma	-26.2	ps/nm

Realistic		
Long Wavelength		
Max	4.514683	
Min	-11.8742	
Mean	-3.72254	
Std Dev	2.282292	
Mean+3 Sigma	3.1	ps/nm
Mean-3 Sigma	-10.6	ps/nm

Basic		
Long Wavelength		
Max	8.686157	
Min	-14.2747	
Mean	-2.61142	
Std Dev	3.584352	
Mean+3 Sigma	8.1	ps/nm
Mean-3 Sigma	-13,4	ps/nm
	5	

Conclusions

- A new fiber standard is not needed for 200G lanes
- Fiber specifications should match existing ITU-T standards
- Extreme dispersion (e.g., +9.2 or -28 ps/nm) values unlikely to be seen
- A statistical approach can be taken for channel simulation and power budgets
- Further refinements can be made including:
 - Realistic Tx wavelength distributions
 - Multiple fibers in link
 - Multiple fiber manufacturers