$\begin{aligned} & \text { Session } \\ & 01-2023 \end{aligned}$	Motion \# 4	Motion Move to approve motions related to "IEEE P802.3dj $200 \mathrm{~Gb} / \mathrm{s}$, 400	Referenced File https://www.ieee802.org/3/di/public/23 01/23 0116/dambrosia 3di 01a	Mover Ali Ghiasi	Second Adee Ran	Results 802.3: Passed by	Notes
		$\mathrm{Gb} / \mathrm{s}, 800 \mathrm{~Gb} / \mathrm{s}$, and $1.6 \mathrm{~Tb} / \mathrm{s}$ Ethernet" previously approved by IEEE P802.3df Task Force noted on Slide \#7 of https://www.ieee802.org/3/dj/public/23_01/23_0116/dambrosia_3dj_ 01a_230116.pdf	230116.pdf			Unanimous Consent	
01-2023	5	Move to adopt timeline for IEEE P802.3dj noted on slide \#8 of https://www.ieee802.org/3/dj/public/23_01/23_0116/dambrosia_3dj_ 01a_230116.pdf	$\begin{aligned} & \text { https://www.ieee802.org/3/dj/public/23 01/23 0116/dambrosia 3dj 01a } \\ & \text { 230116.pdf } \end{aligned}$	Adee Ran	Mike Dudek	802.3: Passed by Unanimous Consent	
01-2023	6	Move to adopt lusted_3dj_02a_230116.pdf slide 6 as the baseline for the 16-lane 1.6TAUI-16 C2M and C2C	$\begin{aligned} & \text { https://www.ieee802.org/3/dj/public/23_01/23_0116/lusted_3dj_02a } \\ & \text { 230116.pdf } \end{aligned}$	Ran	Dudek	802.3: Passed by Unanimous Consent	
01-2023	10	Move to adopt gustlin_3df_01b_230206, slides 6-12, as the baseline for the 1.6 TbE PCS/FEC, with the noted details (PCS lane forming and AM construction) to be determined later	https://www.ieee802.org/3/dj/public/23 01/23 0206/gustlin 3dj 01b 230 206.pdf	Gustlin	Brown	802.3: Passed by Unanimous Consent	Replaced by May 2023 Motion \#4
03-2023	1	Move to: Replace the following objective: - Define a physical layer specification that supports $800 \mathrm{~Gb} / \mathrm{s}$ operation over a single SMF in each direction with lengths up to at least 10 km with the following two objectives: - Define a physical layer specification that supports $800 \mathrm{~Gb} / \mathrm{s}$ operation over 1 wavelength over a single SMF in each direction with lengths up to at least 10 km - Define a physical layer specification that supports $800 \mathrm{~Gb} / \mathrm{s}$ operation over 4 wavelengths over a single SMF in each direction with lengths up to at least 10 km		Nowell	Johnson	802.3: 63 / 3 / 12	
03-2023	2	Move to adopt the following objective for 400GBASE-DR2-2: - Define a physical layer specification that supports $400 \mathrm{~Gb} /$ s operation over 2 pairs of SMF with lengths up to at least 2 km		Welch	Johnson	802.3: Passed by Unanimous Consent	
03-2023	3	Move to: - adopt opsasnick_3dj_01a_2303, slides 3, 5-9, 12-13, as a supplement to the previously adopted 1.6TbE PCS baseline from gustlin_3dj_01b_230206.pdf.	https://www.ieee802.org/3/dj/public/23 03/opsasnick 3dj 01a 2303.pdf	Opsasnick	He	802.3: Passed by Unanimous Consent	
03-2023	4	Move to: - Adopt ran_3dj_01a_2303, slides 6-24 as a baseline for the PMAs with 200 Gbps per lane signaling	https://www.ieee802.org/3/dj/public/23 03/ran 3dj 01a 2303.pdf	Ran	Nicholl	802.3: 69 / 1/13	
03-2023	5	Move to: Adopt patra_3dj_01b_2303 slides 6 to $8,13,14$, and 20 to 23 as part of the FEC approach for - 800GBASE-DR4, 800GBASE-DR4-2, 800GBASE-FR4 - 400GBASE-DR2, 400GBASE-DR2-2* (Note: 400GBASE-DR2-2 pending WG objective approval) - 200GBASE-DR1, 200GBASE-FR1 with FEC lane rate, convolutional interleaver details, and 1.6 T support to be determined later	https://www.ieee802.org/3/di/public/23 03/patra 3dj 01b 2303.pdf	Healey	Dudek	802.3: $70 / 5$ / 15	
05-2023	3	Move to adopt the PCS, DTE XS, and PHY XS noted on slide \#4 of dambrosia_3dj_01a_2305 for all $200 \mathrm{~Gb} / \mathrm{s}$ per lane signaling based PHYs for $200 \mathrm{GbE}, 400 \mathrm{GbE}$, and 800 GbE	https://www.ieee802.org/3/di/public/23 05/dambrosia 3dj 01a 2305.pdf	Dudek	Nicholl	802.3: Passed by Unanimous Consent	
05-2023	4	Move to adopt gustlin_3dj_01b_230206, slides 6-12, as the baseline for the 1.6TbE PCS/FEC	$\begin{aligned} & \frac{\text { https://www.ieee802.org/3/dj/public/23 01/23 0206/gustlin 3dj 01b } 230}{\text { 206.pdf }} \end{aligned}$	Gustlin	Ran	802.3: Passed by Unanimous Consent	Replaces Jan 2023 Motion \#4
05-2023	5	Move to: - Adopt the following backplane objectives for 200GBASE-KR1, 400BASE-KR2, 800GBASE-KR4, and 1.6TBASE-KR8: - Define a physical layer specification that supports $200 \mathrm{~Gb} / \mathrm{s}$ operation over 1 lane over electrical backplanes supporting a die-to-die insertion loss $<=40 \mathrm{~dB}$ at 53.125 GHz - Define a physical layer specification that supports $400 \mathrm{~Gb} / \mathrm{s}$ operation over 2 lanes over electrical backplanes supporting a die-to-die insertion loss $<=40 \mathrm{~dB}$ at 53.125 GHz - Define a physical layer specification that supports $800 \mathrm{~Gb} / \mathrm{s}$ operation over 4 lanes over electrical backplanes supporting a die-to-die insertion loss <= 40 dB at 53.125 GHz - Define a physical layer specification that supports $1.6 \mathrm{~Tb} / \mathrm{s}$ operation over 8 lanes over electrical backplanes supporting a die-to-die insertion loss $<=40 \mathrm{~dB}$ at 53.125 GHz	Key Motions	Mellitz	Weaver	802.3: Passed by Unanimous Consent	

IEEE P802.3dj Task Force, 14 Mar 2024

05-2023	6	Move to: - Adopt differential PAM4 signaling as the basis for all of the $200 \mathrm{Gbps} / \mathrm{lane}$ passive copper cable and backplane PMDs and adopt RS(544,514,10) as the only FEC encoding for all of the 200 Gbps /lane passive copper cable and backplane PMDs		Li, Mike	Ghiasi	802.3: Passed by Unanimous Consent
05-2023	7	Move to adopt a CRU bandwidth and jitter tolerance corner frequency of 4 MHz for all 802.3dj PMD/AUIs operating at RS544 FEC (The calculation for CRU BW is based on the following fBaud/26562.5)		Ghiasi	Li, Mike	802.3: Passed by Unanimous Consent
05-2023	8	Move to: - adopt a DERO value of 2.67e-5 (equivalent to measured BER of $4 \mathrm{e}-5$ with precoding ON) as the total allocation for higher-loss AUls within a PHY (BER division between C2C and C2M as well as the measurement method to be determined later)		Ran	Kota	802.3: $75 / 3 / 20$
05-2023	9	Move to: - Adopt patra_3dj_01b_2303 slides 6 to 8,13,14, and 20 to 23 as part of the FEC approach for 800GBASE-LR4 with FEC lane rate and convolutional interleaver details to be determined later	https://www.ieee802.org/3/di/public/23 03/patra 3dj 01b 2303.pdf	Rodes	Ghiasi	802.3: Passed by Unanimous Consent
05-2023	10	Move to: - adopt DP-16QAM modulation on a single wavelength as the basis for the following objectives: - Define a physical layer specification that supports $800 \mathrm{~Gb} / \mathrm{s}$ operation: - over 1 wavelength over a single SMF in each direction with lengths up to at least 10 km - over a single SMF in each direction with lengths up to at least 40 km		Nowell	Brown	802.3: Passed by Unanimous Consent
07-2023	4	Move to adopt the direction of adding an option to support only RS544 FEC (aka Bypass Inner FEC) for the single wavelength 500 m and 2 km optical PMDs with the mechanism to enable it remaining TBD		Welch	Rechtman	802.3: Passed by Unanimous Consent
07-2023	5	Move to adopt BCH FEC as defined in kota_3dj_01a_2307.pdf slides 6-18 as the baseline FEC specification for the single wavelength $10 \mathrm{~km} 800 \mathrm{~Gb} / \mathrm{s}$ optical PMD.	https://www.ieee802.org/3/dj/public/23 07/kota 3dj 01a 2307.pdf	Maniloff	Stassar	802.3: 60 / 14 / 20
07-2023	6	Move to adopt one DERO value of $2.67 \mathrm{e}-5$ (equivalent to measured BER of $4 \mathrm{e}-5$ with precoding ON) as the total allocation for 200Gbps/lane AUIs within a PHY (BER division between C2C and C2M as well as the measurement method to be determined later)		Ran	Tobey P. -R. Li	802.3: Passed by Unanimous Consent
07-2023	7	Move to adopt a die-to-die insertion loss <= 40 dB at 53.125 GHz for 200GBASECR1, 400GBASE-CR2, 800GBASE-CR4 and 1.6TBASE-CR8 PHYs		Mike Li	Tracy	802.3: Passed by Unanimous Consent
07-2023	8	Move to adopt stateless 64b/66b encode and decode, as defined in opsasnick_3dj_01a_2307.pdf slides 7 and 8, as an option for 200GbE and 400GbE for all 200G/lane PHY/PMDs	https://www.ieee802.org/3/di/public/23 07/opsasnick 3dj 01a 2307.pdf	Opsasnick	Gustlin	802.3: Passed by Unanimous Consent
07-2023	9	Move to adopt the same inner FEC architecture used for $200 \mathrm{GbE} / 400 \mathrm{GbE} / 800 \mathrm{GbE}$ for 1.6 TbE SMF optical PMDs ($500 \mathrm{~m} / 2 \mathrm{~km}$)		Ghiasi	Kota	802.3: Passed by Unanimous Consent
07-2023	10	Move to adopt the $4 x$ RS codewords interleaving for 200GbE and 400 GbE using 200G/lane AUls or PMDs, as shown in slides 4-6 and 10 of he_3dj_02a_2307 along with deskew (alignment) to codeword boundaries for 100G/lane input lanes.	https://www.ieee802.org/3/dj/public/23 07/he 3dj 02a 2307.pdf	He	Ran	802.3: Passed by Unanimous Consent
07-2023	11	Move to adopt the FEC_I sublayer architecture with 2006 throughput convolutional interleaver as shown in slides 6-11 of he_3dj_01_2307 for 200G/400G/800G/1.6TbE	https://www.ieee802.org/3/dj/public/23 07/he 3dj 01 2307.pdf	He	Nicholl	802.3: Passed by Unanimous Consent
07-20-2023	1	Move to adopt the 200G/L Die/Device Model changes to Annex 93A (COM) proposed in lim_3dj_01a_2307 slides 6 and 7	https://www.ieee802.org/3/dj/public/23 0720/lim 3dj 01a 2307.pdf	Mike Li	Weaver	802.3: Passed by Unanimous Consent
07-20-2023	3	Move to adopt the 200G/L package model to Annex 93A (COM) proposed in https://www.ieee802.org/3/dj/public/23_07/benartsi_3dj_02_2307.pdf slide 5	https://www.ieee802.org/3/di/public/23 07/benartsi 3dj 02 2307.pdf	Dudek	Ben-Artsi	802.3: 22 / 5 / 10
09-2023	3	Move to adopt the self-sync method for inner FEC as described in pages 7-11 of he_3dj_01a_2309.	https://www.ieee802.org/3/dj/public/23 09/he 3dj 01a 2309.pdf	He	Gustlin	802.3: Passed by Unanimous Consent
09-2023	4	Move to adopt the Inner FEC Pad insertion changes of pad block from 384 bits to 1024 bits (8 Inner FEC CWs) and insertion period from 3264 CWs to 8704 CWs , including 8:1 Hamming interleaver protection for pad bits, as shown in rechtman_3dj_01a_2309 slides 5-7 and 10.	https://www.ieee802.org/3/di/public/23 09/rechtman 3dj 01a 2309.pdf	Rechtman	He	802.3: Passed by Unanimous Consent
09-2023	5	Move to adopt the the CR host and cable assembly insertion loss budget proposed in diminico_3dj_01a_2309, slide 7 for the symmetrical CR use case.	https://www.ieee802.org/3/dj/public/23 09/diminico 3dj 01a 2309.pdf	Diminico	Tracy	802.3: Passed by Unanimous Consent

09-21-2023	1	Move to adopt C2C DER_0 $=0.67 \mathrm{E}-5$ and C2M DER_0 $=2 \mathrm{E}-5$ for the case when the AUI DER_0 is split across the C2M and the C2C inside of a Type 1 or Type 2 PHY per lusted_3dj_01a_230921, slide 7	https://www.ieee802.org/3/dj/public/23 0921/lusted 3dj 01a 230921.pdf	Brown	Li, Mike	802.3: Passed by Unanimous Consent
09-21-2023	2	Move to adopt C2M DER_0 $=2 \mathrm{E}-5$ for the case when the AUI is only a C2M (no C2C) inside of a Type 1 or Type 2 PHY per choice A in lusted_3dj_01a_230921, slide 9	https://www.ieee802.org/3/dj/public/23 0921/lusted 3dj 01a 230921.pdf	Brown	Ghiasi	802.3: 46 / 4 / 9
11-2023	7	Move to adopt the proposal on slide 2 of lusted_3dj_07a_2311	https://www.ieee802.org/3/dj/public/23 11/lusted 3dj 07a 2311.pdf	Ofelt	Dudek	802.3: Passed by Unanimous Consent
11-2023	8	Move to adopt gustlin_3dj_01_2311 to fill the 802.3dj logic baseline holes that were identified in brown_3dj_01_2309	https://www.ieee802.org/3/dj/public/23 11/gustlin 3dj 01 2311.pdf	Gustlin	Nicholl, Shawn	802.3: Passed by Unanimous Consent
11-2023	9	Move to adopt the two package approach proposed in lusted_3dj_02_2311 slide \#4	https://www.ieee802.org/3/dj/public/23 11/lusted 3dj 02 2311.pdf	Li, Mike	Ben-Artsi	802.3: Passed by Unanimous Consent
11-2023	10	Move to adopt the proposed Class A and Class B package parameters in lim_3dj_01a_2311 slides 8-9 for 200G/lane backplane and copper cable PHYs as a baseline proposal	https://www.ieee802.org/3/dj/public/23 11/lim 3dj 01a 2311.pdf	Li, Mike	Ben-Artsi	802.3: Passed by Unanimous Consent
11-2023	11	Move to adopt the host and cable assembly insertion loss budgets proposed in the magenta box "proposed baseline content" in tracy_3dj_01a_2311, slide 12, for the copper cable objectives. Specific host and cable assembly nomenclature is a TBD.	https://www.ieee802.org/3/dj/public/23 11/tracy 3dj 01a 2311.pdf	Weaver	Noujeim	802.3: Passed by Unanimous Consent
11-2023	12	Move to adopt DER_0 $=2 \mathrm{e}-4$ for $200 \mathrm{~Gb} / \mathrm{s}$ per lane backplane and copper cable PMD link		Healey	Heck	802.3: Passed by Unanimous Consent
11-2023	13	Move to adopt the "TP1-TP4 IL" column in the table and MCB insertion loss (2.7 dB) on slide 9 of diminico_3dj_01_2311 for 200GBASE-CR1, 400GBASE-CR2, 800GBASE-CR4 and 1.6TBASE-CR8 PHYs.	https://www.ieee802.org/3/di/public/23 11/diminico 3dj 01 2311.pdf	Diminio	Tracy	802.3: Passed by Unanimous Consent
11-2023	15	Move to adopt the 800GBASE-LR4 PMD baseline as shown in rodes_3dj_01a_2311 pages 4-9	https://www.ieee802.org/3/dj/public/23 11/rodes 3dj 01a 2311.pdf	Rodes	Liu	802.3: 78 / 1/14
11-28-2023	1	Move to adopt timeline for IEEE P802.3dj noted on slide \#6 of https://www.ieee802.org/3/dj/public/23_1128/dambrosia_3dj_01b_2311.pdf	https://www.ieee802.org/3/dj/public/23 1128/dambrosia 3dj 01b 2311.p df	Nowell	Ghiasi	802.3: Passed by Unanimous Consent
01-2024	2	Move to adopt lusted_nowell_3dj_01_2401 page 3	https://www.ieee802.org/3/dj/public/24 01/lusted nowell 3dj 01 2401.pd f	Lusted	Nowell	802.3: Passed by Unanimous Consent
01-2024	3	Move to adopt lusted_nowell_3dj_01_2401 page 2	https://www.ieee802.org/3/dj/public/24 01/lusted nowell 3dj 01 2401.pd f	Nowell	Brown	802.3: 76 / 13 / 12
01-2024	5	Move to adopt the 800GBASE-FR4-500 baseline as shown in welch_3dj_01a_2401 pages 10-16	https://www.ieee802.org/3/dj/public/24 01/welch 3dj 01a 2401.pdf	Nowell	Lusted	802.3: 68 / 16 / 14
01-2024	6	Move to adopt the COM Die/Device model parameters in lim_3dj_01_2401 slide 8 for 200G/Lane KR, CR, AUI chip-to-chip and chip-to-module	https://www.ieee802.org/3/dj/public/24 01/lim 3dj 01 2401.pdf	Lusted	Nowell	802.3: Passed by Unanimous Consent
01-2024	7	Move to adopt lusted_nowell_3dj_01_2401 page 4	https://www.ieee802.org/3/dj/public/24 01/lusted nowell 3dj 01 2401.pd f	Lusted	Nowell	802.3: 58/3/20
01-2024	9	Move to adopt lusted_nowell_3dj_01_2401 page 6	https://www.ieee802.org/3/dj/public/24 01/lusted nowell 3dj 01 2401.pd	Lusted	Nowell	802.3: 57 / 5 / 15
01-2024	10	Move to adopt lusted_nowell_3dj_01_2401 page 7	https://www.ieee802.org/3/dj/public/24 01/lusted nowell 3dj 01 2401.pd f	Lusted	Ran	802.3: Passed by Unanimous Consent
01-2024	11	Move to adopt the 800GBASE-LR1 state diagrams in bruckman_3dj_01a_2401, slides 4-6 (with values of N and M as TBD)	https://www.ieee802.org/3/dj/public/24 01/bruckman 3dj 01a 2401.pdf	Bruckman	Maniloff	802.3: Passed by Unanimous Consent
01-2024	12	Move to adopt the IMDD inner FEC example test vectors in levy_3dj_02a_2401.7z, as described in levy_3dj_01b_2401.	https://www.ieee802.org/3/dj/public/24_01/levy_3dj_01b_2401.pdf https://www.ieee802.org/3/dj/public/24_01/levy_3dj_02a_2401.7z	Brown	He	802.3: Passed by Unanimous Consent
03-2024	2	Move to adopt the following as baselines for the 800GBASE-ER1-20 PHY - optical: wang_3dj_01a_2403 pages 7-10 - logic: nicholl_3dj_02a_2307	https://www.ieee802.org/3/dj/public/24_03/wang_3dj_01a_2403.pdf https://www.ieee802.org/3/dj/public/23_07/nicholl_3dj_02a_2307.pdf	Williams	Kareti	802.3: 58 / 9 / 13
03-2024	3	Move to amend the adopted 800GBASE-ER1 and 800GBASE-ER1-20 logic baselines (nicholl_3dj_02a_2307) based on slides 6-9 of huber_3dj_01a_2403.	https://www.ieee802.org/3/dj/public/23 07/nicholl 3dj 02a 2307.pdf https://www.ieee802.org/3/dj/public/24 03/huber 3dj 01a 2403.pdf	Huber	Sluyski	802.3: Passed by Unanimous Consent
03-2024	4	Move to amend the 800GBASE-ER1 optical baseline (williams_3dj_01a_2305 pgs 7-10) per wang_3dj_01a_2403 pages 7-10	https://www.ieee802.org/3/dj/public/23_05/williams_3dj_01a_2305.pdf https://www.ieee802.org/3/dj/public/24_03/wang_3dj_01a_2403.pdf	Williams	Kareti	802.3: Passed by Unanimous Consent
03-2024	5	Move to adopt malicoat_3dj_01a_2403 as the MDI baseline for 400GBASE-DR2 and 400GBASE-DR2-2	https://www.ieee802.org/3/dj/public/24 03/malicoat 3dj 01a 2403.pdf	Malicoat	Stassar	802.3: Passed by Unanimous Consent
03-2024	8	Move to adopt the AUI C2C DER_0 per slide 6 of lusted_3dj_04_2403	https://www.ieee802.org/3/dj/public/24 03/lusted 3dj 04 2403.pdf	Heck	Dudek	802.3: 51 / 1/27
03-2024	9	Move to adopt the CR MDI connector naming per diminico_3dj_01_2403, slide 4	https://www.ieee802.org/3/di/public/24 03/diminico 3dj 01 2403.pdf	Diminico	Kocsis	802.3: 58/5 / 16
03-2024	11	Move to adopt the proposal for automatic polarity detection and correction in the start-up protocol, per ran_3dj_01a_2403	https://www.ieee802.org/3/dj/public/24 03/ran 3dj 01a 2403.pdf	Ran	HEck	802.3: Passed by Unanimous Consent
03-2024	12	Move to adopt the proposal for training pattern changes in the start-up protocol, per ran_3dj_03a_2403	https://www.ieee802.org/3/dj/public/24 03/ran 3dj 03a 2403.pdf	Ran	Brown	802.3: 60 / 1/22

Key Motions
IEEE P802.3dj Task Force, 14 Mar 2024

13 Move to adopt the start-up protocol to enable segment-by-segment training per ran 3di 042403 sidint
https://www.ieee802.org/3/dj/public/24_03/ran_3dj_04_2403.pdf
https://www.ieee802.org/3/dj/public/24_01/lusted_nowell_3dj_01_2401.pdf)
Move to adopt: 400GBASE-DR2, 800GBASE-DR4, 1.6TBASE-DR8, 800GBASE-FR4-500
CRU text per ghiasi_3dj_01a_2403 page 11 with 4 MHz CRU for all backplane and Cu cable PMDs
CRU text per ghiasi_3dj_01a_2403 page 13 with 4 MHz CRU for 200GBASE-FR1,
400GBASE-DR2-2, 800GBASE-DR4-2, 1.6TBASE-DR8-2, 800GBASE-FR4, 800GBASELR4

