Stateless 64B/66B PCS Coding for all 200G/Lane Breakout Interfaces

Eugene Opsasnick, Broadcom

IEEE P802.3dj Task Force July 2023 Plenary

Supporters

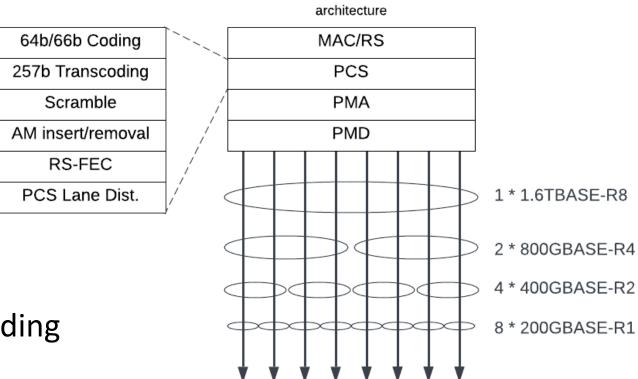
- Mark Gustlin, Cisco
- Matt Brown, ()
- Kent Lusted, Intel
- Arthur Marris, Cadence
- Daniel Koehler, Synopsys
- Gary Nicholl, Cisco
- David Ofelt, Juniper Networks
- Shawn Nicholl, AMD
- Tom Huber, Nokia
- Xiang He, Huawei
- Adee Ran, Cisco

Introduction

- 64B/66B PCS Encoding
 - The 66b codes are defined in Clause 82, Figure 82-5* "64B/66B Block Formats"
 - These block codes are used for all BASE-R PHYs from 40GbE to 1.6TbE
 - State Diagrams are used to define the legal sequences of blocks
 - Figures 119-14* and 119-15* for 200BASE-R and 400BASE-R (also 800GBASE-R)
 - Figures 82-16 and 82-17 for 40GBASE-R and 100GBASE-R
 - Same as Figures 49-16 and 49-17 for 10GBASE-R
 - A "stateless" option that can be used in place of the state diagrams was adopted for the 800GBASE-R PCS in 802.3df
- The stateless and state-based options are interoperable
 - Using the same 66-bit codes, there are minor differences in error handling

^{*} The coding table and state diagrams are shown in backup slides for reference.

Stateless 64b/66b Encode/Decode


- As port speeds get faster:
 - Internal busses must get wider as it is harder to increase the ASIC clock frequency
 - For Stateful 64b/66b coding, each 8-byte block depends on the result of the previous block
 - It gets harder to implement the "stateful" 64b/66b Encode & Decode on the wider data busses
 - With the Stateless encoder/decoder, this per-block dependency is removed
 - See <u>opsasnick 3df 01a 221005.pdf</u>
 - MTTFPA is acceptable with RS[544, 514] based interfaces
 - See opsasnick 3df 01a 2212.pdf
 - State-based protection relies on redundancy in the 66b sync header that does not exist with transcoding
 - RS[544, 514] give better protect now than state diagrams for interfaces without FEC
- Current adoption of stateless 64b/66b encode/decode option
 - 802.3df adopted the stateless option for 800GbE PCS (CL 172)
 - 802.3dj also adopted the stateless option in the 1.6TbE PCS baseline
- Stateless and State-based encoding/decoding are fully inter-operable
 - It is a device choice to implement either one

Background

- 802.3df Draft 1.1, comment #42
 - Suggested adding the stateless 64b/66b option to Clause 119 for all 200/400GBASE-R PHYs for commonality with the 800GBASE-R PCS
 - The 802.3df ballot resolution committee deemed general updates to Clause 119 to be "out of scope"
 - Only changes related to the PHYs/PMDs being added are in scope
 - 802.3df only adds a single new PHY (400GBASE-DR4-2) based on 100G/lane
- For 802.3dj
 - All new PHYs/PMDs based on 200G/lane are in scope
 - Can now update Clause 119, 200/400G PCS, with respect to these new PHYs

200GbE – 1.6TbE Implementations on 200G/lane

- For 200 Gb/s per lane Interfaces
 - Breakout applications usually support all port speeds from 200GbE to 1.6TbE
- PCS 64b/66b options
 - Baseline for 1.6TBASE-R PCS
 - Stateful or stateless
 - CL 172: 800GBASE-R PCS
 - Stateful or stateless
 - CL 119: 200/400GBASE-R PCS
 - Currently stateful only
- For a common stateless 64b/66b Coding
 - Requires CL 119 changes to allow the stateless 64b/66b option for 200G/lane PHYs

Generic 200G/400G/800G/1.6T

802.3df Draft 2.1, Stateless Encoder Rules

172.2.4.1.2 Stateless encoder

The stateless encoder generates 66-bit blocks based only on the current and preceding 800GMII transfers. Each 800GMII transfer is mapped into a 72-bit vector tx_raw<71:0> (see 172.2.6.2.2). The encoder shall encode each tx_raw<71:0> to a 66-bit block tx_coded<65:0> according to the rules in Table 172–1. Constants LBLOCK_T and EBLOCK_T are defined in 172.2.6.2.1. Variables reset, tx_raw, and tx_coded are defined in 172.2.6.2.2. Functions T TYPE and ENCODE, and the block types are defined in 172.2.6.2.3.

Table 172-1—PCS stateless encoder rules

reset	T_TYPE(tx_raw _{i-1}) ^a	$T_TYPE(tx_raw_i)^b$	Resulting tx_coded LBLOCK_T ENCODE(tx_raw_i)		
- 1	any block type	any block type			
0	C or T	C			
0	C or T	S	ENCODE(tx_raw _i)		
0	S or D	ENCODE(tx_raw _i)			
0	S or D	T	ENCODE(tx_raw _i)		
0	any combination	EBLOCK_T			

^a tx_raw_{i-1} is the 72-bit vector that immediately precedes tx_raw_i.

b tx raw, is the 72-bit vector that is being encoded.

802.3df Draft 2.1, Stateless Decoder Rules

172.2.5.9.2 Stateless decoder

The stateless decoder generates 800GMII transfers based only on the current and preceding 66-bit blocks. The decoder shall decode each 66-bit block rx_coded<65:0> to a 72-bit vector rx_raw<71:0> (see 172.2.6.2.2) according to the rules in Table 172–4. Constants LBLOCK_R and EBLOCK_R are defined in 172.2.6.2.1. Variables reset, rx_raw, and rx_coded are defined in 172.2.6.2.2. Functions R_TYPE and DECODE, and the block types are defined in 172.2.6.2.3.

Table 172–4—PCS stateless decoder rules

reset	R_TYPE(rx_coded _{i-1}) ^a	$R_TYPE(rx_coded_i)^b$	Resulting rx_raw		
1	any block type	any block type	LBLOCK_R		
0	any block type	E	EBLOCK_R		
0	Е	any block type	EBLOCK_R		
0	any combination	DECODE(rx_coded _i)			

 $^{^{}a}$ rx_coded_{i-1} is the 66-bit block that immediately precedes rx_coded_i.

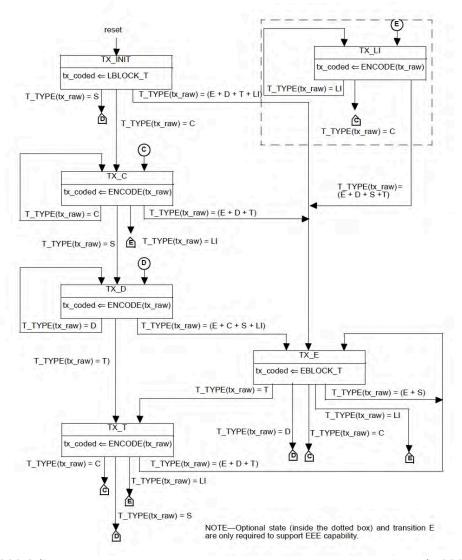
^b rx_coded_i is the 66-bit block that is being decoded.

Summary

- Suggested course of action
 - Specify stateless 64b/66b encode and decode as an option in Clause 119
 - As defined in 802.3df D2.1 172.2.4.1.2 and 172.2.5.9.2 and shown on slides 7 and 8, for all 200G/lane PHY/PMDs
 - Allows for a single stateless 64b/66b design for common breakout applications
 - This option would not apply to PHY/PMDs not defined in 802.3dj which use Clause 119
 - Does not affect 200GbE and 400GbE PHY/PMDs already defined (over 100G/lane or 50G/lane)

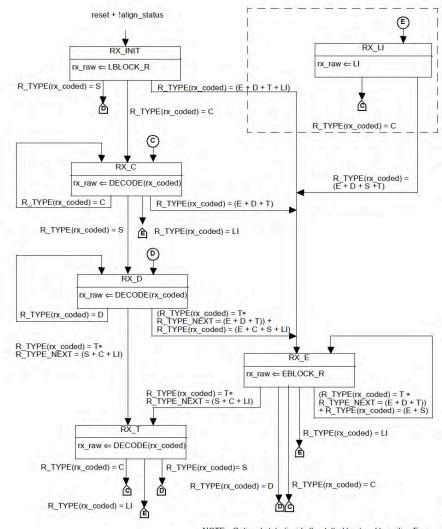
A straw poll is planned to gauge support

Thank You


Backup/Reference slides follow

802.3 Figure 82-5: 64B/66B Block Formats

Input Data	Sync	Block Payload 2								
Bit Position:	0 1									
D ₀ D ₁ D ₂ D ₃ D ₄ D ₅ D ₆ D ₇	01	D ₀	D ₁	D ₂	D ₃		D ₄	D ₅	D ₆	D ₇
Control Block Formats:		Block Type Field								
$C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7$	10	0x1E	C ₀	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
S ₀ D ₁ D ₂ D ₃ D ₄ D ₅ D ₆ D ₇	10	0x78	D ₁	D ₂	D ₃	D ₄		D ₅	D ₆	D ₇
O ₀ D ₁ D ₂ D ₃ Z ₄ Z ₅ Z ₆ Z ₇	10	0x4B	D ₁	D ₂	D ₃	O ₀	O ₀ 0x000_0000			
T ₀ C ₁ C ₂ C ₃ C ₄ C ₅ C ₆ C ₇	10	0x87		C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
$D_0 T_1 C_2 C_3 C_4 C_5 C_6 C_7$	10	0x99	D ₀		C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
D ₀ D ₁ T ₂ C ₃ C ₄ C ₅ C ₆ C ₇	10	0xAA	D ₀	D ₁		C ₃	C ₄	C ₅	C ₆	C ₇
D ₀ D ₁ D ₂ T ₃ C ₄ C ₅ C ₆ C ₇	10	0xB4	D ₀	D ₁	D ₂		C ₄	C ₅	C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ T ₄ C ₅ C ₆ C ₇	10	0xCC	D ₀	D ₁	D ₂		03	C ₅	C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ D ₄ T ₅ C ₆ C ₇	10	0xD2	D ₀	D ₁	D ₂	D ₂		D ₄	C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ D ₄ D ₅ T ₆ C ₇	10	0xE1	D ₀	D ₁	D ₂		03	D ₄	D ₅	C ₇
D ₀ D ₁ D ₂ D ₃ D ₄ D ₅ D ₆ T ₇	10	0xFF	D ₀	D ₁	D ₂		03	D ₄	D ₅	D ₆


- (D)ata Block
 - Sync=01
- (C)ontrol Block
 - Sync=10
 - BT=0x1E or 0x4B
- (S)tart Block
 - Sync=10
 - BT=0x78
- (T)erminate Block
 - Sync=10
 - BT=0x87,
 0x99,0xAA,0xB4,0xCC,
 0xD2,0xE1, or 0xFF
- (E)rror Block
 - Anything else

802.3 Figure 119-14: Transmit State Diagram

- After Reset, the "normal flow" is:
 - 1. State TX_C
 - One or more IDLE Control blocks
 - 2. State TX D
 - Transmit a (S)tart block
 - 3. State TX_D * n
 - Several blocks of (D)ata
 - 4. State TX_T
 - Transmit a (T)erminate block
 - Repeat sequence 1-4
 - Can skip #1 and directly send (S) block in step #2
- In TX_E state:
 - (S)tart blocks are not propagated
 - This restriction on (S)tart blocks is not necessary

802.3 Figure 119-15: Receive State Diagram

NOTE—Optional state (inside the dotted box) and transition E are only required to support EEE capability.

- After Reset, the "normal flow" is
 - Same as TX flow
 - State RX_C (Idles)
 - 2. State RX D (Start)
 - State RX D (Data)
 - State RX_T (Terminate)Repeat
- In RX_E state:
 - Same unnecessary restriction on (S)tart blocks
- Additional restrictions on (T)erminate blocks
 - The next block after the (T) must be a correct block type: (S) or (C) or (LI)
 - This restriction on (T) blocks is not necessary

Additional Historical References

- The 64b/66b code and PCS State diagrams were introduced in 802.3ae for 10GbE without FEC, see:
 - walker 1 0300.pdf, walker 1 0500.pdf, and walker 1 0700.pdf
- Considerations
 - CRC32 has a hamming distance of 4
 - Up to 3 bits in error are always detected
 - The state diagrams make use of the 2-bit sync header in the 66-bit code to make sure there are at least 4 bit errors before an "undetectable" packet framing error occurs.
 - To maintain the MTTFPA
 - However, with the addition of RS-FEC in more recent projects, the protection of the state diagrams is diminished since the redundant sync header bits are removed by the 257b transcoding.
 - The RS[544] FEC gives better protection now than the state diagrams and hamming distance of 4.