TBDs in Clause 999

Sisi Tan, Huawei Technologies

P802.3dk TF September 2024 Interim

999.7.12 Receiver sensitivity

Figure 999–6—Illustration of receiver sensitivity

For 100GBASE-BR10, receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 3.2 dB. Receiver sensitivity should meet Equation (999–4), which is illustrated in Figure 999–7.

3.4

For 100GBASE-BR20, receiver sensitivity in informative and defined for a transmitter with a value of SECQ up to 3.4 dB. Receiver sensitivity should meet Equation (999-5), which is illustrated in Figure 999-6.

For 100GBASE-BR20, receiver sensitivity in informative and defined for a transmitter with a value of SECQ up to 3.9 dB. Receiver sensitivity should meet Equation (999-6), which is illustrated in Figure 999-6.

$$RS = \max(-6.1, SECQ - 7.5)$$
 (dBm) (999–4)

$$RS = max(-12.8, SECQ-14.2)$$
 (dBm) (999-5)

$$RS = max(-13.2, SECQ-14.6)$$
 (dBm) (999-6)

where

RS is the receiver sensitivity

SECQ is the SECQ of the transmitter used to measure the receiver sensitivity

Table 999–12—Fiber optic cabling (channel) characteristics

Description	100GBASE- BR10	100GBASE- BR20	100GBASE- BR40	Unit
Operating distance (max)	10	20	40	km
Channel insertion loss ^{a, b} (max)	6.3	10	18	dB
Channel insertion loss (min)	0	0	10	dB
Positive dispersion ^b (max)	9.2	18.4	37	ps/nm
Negative dispersion ^b (min)	-19.2	-38.4	-77	ps/nm
DGD_max ^c	5	TBD	TBD	ps
Optical return loss (min)	22	22	19	dB

 $^{^{\}rm a}$ These channel insertion loss values include cable, connectors, and splices. $^{\rm b}$ Over the wavelength range 1303.6 nm to 1310.1 nm.

The DGD value is to be determined by updates in 802.3dj.

^c Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system is required to tolerate.

999.11 Requirements for interoperation between 100GBASE-BRx PMDs

Table 999–15—Channel insertion loss requirements for interoperation between 100GBASE-BR20 and 100GBASE-BR40

Direction	Min loss	Max loss	Unit
100GBASE-BR20 transmitter to 100GBASE-BR40 receiver	1.7	10	dB
100GBASE-BR40 transmitter to 100GBASE-BR20 receiver	8.3	18	dB

- Min loss = Tx average launch power (max) Rx average receive power (max)
- Max loss = channel insertion loss (max)

Thank you

Any questions?