Updated Maximum Link Segment Delay Considerations

A Leading Provider of Smart, Connected and Secure Embedded Solutions

Scott Muma, Steve Gorshe 5/12/2025

Supporters

• **

Background

- A contribution to the May 1 TF Interim meeting (gorshe_3dm_01a_250501) provided initial analysis for addressing the MultiG+100MBASE-V1 maximum link delay "tbd."
- The focus of this contribution is to provide a more detailed analysis and proposal regarding the –V1 link segment delay, providing additional data and addressing comments that have been received since the original presentation.

Link Propagation Delay

The previous contribution assumed a combination of CX174 and CX31 coaxial cable, with a worst-case velocity factor *n* of 0.66 for both. Additional data sheet study indicates:

- CX174 data sheets show *n* = 0.66
- CX31 data sheets show n = 0.66 for some cables. Other cables have a range of n = 0.75 to 0.83, with 0.75 explicitly typically stated as the worst case. Consequently, while using 0.75 would be reasonable, I use the worst case 0.66 here

The previous contribution did not include delay associated with the up to 4 in-line connectors. Although I requested connector delay information from experts affiliated with connector vendors, none was received prior to the upload deadline.
Per 802.3 clause 80.4,

cable delay = $10^9 / nc = 10^9 / (n \times (3 \times 10^8))$ ns/m

- Yielding: 5.05 ns/m for CX174 and the worst case for CX31
 - CX31 with 0.75 would have 4.4 ns/m

(80-1)

Link Propagation Delay for –V1

4 in-line connectors

Per the velocity factor assumptions of the previous slide, the worst case is:

Total Delay = (5.05 × 3) + (5.05 × 12) + (connector delay) = 76 ns + **

Link Propagation Delay for –V1

- As previously noted:
 - Since coax has a single conductor, there is no need for margin to accommodate the added SDP length due to the cable twisting
 - Coaxial cables typically have low group delay variation (e.g., <50 ps/m at 1 MHz), which implies that an associated added margin of 1% would be adequate
- Consequently, a small additional margin of <tbd> should be added, giving a total link segment delay of **

Link Propagation Delay – Conclusions and Proposals

□ In summary, for 15 m coaxial cables:

• Based on the analysis in this contribution, we propose that the following text should be adopted for clause 200.12.1.6:

"The propagation delay of a link segment shall not exceed ** ns at all frequencies between 2 MHz and 4000 MHz."

Thank You

