

802.3ch EEE Overview

O9/18/24

Supporters

Alireza Razavi

Agenda

- Motivation
- 802.3ch EEE Overview
- LPI mode entry/exit
- Timing and Latency parameters

Motivation

- EEE has been discussed as power saving mechanism for 802.3ch Sensor PHY.
 - https://www.ieee802.org/3/cfi/0723 1/CFI 01 0723.pdf
 - "Can provide power saving with EEE (quiet-refresh cycling) based on traffic offered"
 - https://www.ieee802.org/3/cfi/0723 1/CFI 01 0723.pdf
 - "Can we adapt 802.3ch/quiet-refresh to meet the need?"
- There is interest to re-use existing specification if it can meet the needs of camera sensor.
- We will present here some information regarding the 802.3ch EEE spec which is relevant to 802.3dm

802.3ch EEE Features

- EEE in 802.3ch provides a mechanism to lower power dynamically.
- The PHY TX initiates the power mode transition. The PHY RX follows.
 - The 2 traffic directions enter/exit low power mode independently.
- Heuristic when to enter/exit low power mode done in higher layer. PHY will handle requests according to spec.
 - Allows flexibility for higher layer to initiate low power mode based on traffic availability.
- Additional mechanism for link partner to request exit low power mode, through OAM channel.
 - Not discussed here.

802.3ch EEE Overview

DATA

Low Power Idle (LPI) mode

ALERT

DATA

- DATA mode:
 - Ethernet packets can flow through.
- ALERT:
 - ALERT reception starts the wake up process
- SLEEP/WAKE:
 - This is a transition state when entering/exiting low power
- Low Power Idle (LPI) mode:
 - Periodic refresh to keep clock/adaptation updated.

Low power Idle (LPI) mode

- In the low power state, the PHY TX periodically transmits "Refresh" signals to keep adaptation loops and clock recovery updated.
 - This is called the QR (quiet-refresh) cycle.
 - Refresh is 1/96 ~ 1% of the QR cycle

Going to LPI mode through /LI/ characters

- Upon receipt of /LI/ characters at the XGMII interface, the PCS TX initiates SLEEP at the next available 8 RS-FEC frame window.
- RX side enters LPI upon receipt of /LI/ characters.

Exiting LPI mode through /I/ characters

- Upon receipt of non /LI/ characters at the XGMII interface, the PCS TX initiates wake up at the next alert opportunity.
 - Frequency of alert opportunities depend on slow_wake.

TX Alert signal to wake up RX

- TX sends ALERT pattern to let RX know wake up sequence about to start.
- RX detects ALERT signal and starts wake up sequence.
- Alert is a known PAM2 sequence (same as SEND_S).
 - Baud rate is slow: 703.125MHz to ensure easy reception.
 - [1, 2, 4] * 4 * 0.320ns * 703.125MHz = [900, 1800, 3600] transmitted symbols for [10, 5, 2.5] Gb/s
- In 802.3ch, ALERT can be sent only at specific points in the QR cycle.

Timing parameter summary

Parameter	Value
QR cycle length	30.72us / S
Refresh	0.32us / S
ALERT time	1.28us/ S
WAKE time	2.56us / S
SLEEP time	2.56us / S

S = 0.25/0.5/1.0 for 2.5/5/10G

Latency Specification

- Key Question:
 - How long do I have to wait from the time I request wakeup at XGMII to the time I can transmit data at XGMII interface?
 - This number is bounded by spec under the name "T_w_sys_tx"
- Alert start opportunity sparsity determine how long before wake up sequence can start.

Latency Specification

- T_w_sys_tx depends on slow_wake mode.
 - In **slow_wake** = 0, alert opportunity is more frequent (every 8 RS-FEC frames).
 - In slow_wake = 1, it is every refresh (96 RS-FEC frame).
- T_w_sys_tx depends on whether sleep signal was completed when request to wake up was done.

Conclusion

- 802.3ch EEE provides a mechanism to dynamically save power based on traffic availability.
- 802.3ch EEE provisions for the 2 traffic directions to enter/exit LPI mode independently.
 - Asymmetric power states are allowed.
- In the low power state, periodic refresh maintains equalizer/clock recovery updates.
 - The refresh window is 1% duty-cycled.
- The worst case time between request to transmit and ability to transmit data is specified by spec to be 6.4us / S or 8.96us / S depending on whether SLEEP signal completed with slow_wake=0.
- This number is important when computing link latency for 802.3dm.

References

- "MultiGig EEE Overview", Jim Graba (TC16 Open alliance, April 28 2022)
- 802.3ch specification

