## **TDD Proposal**

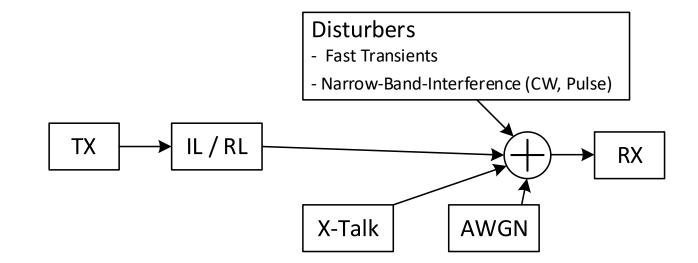
IEEE 802.3dm

November Plenary, Vancouver

Conrad Zerna (Aviva Links Inc.)

#### Motivation

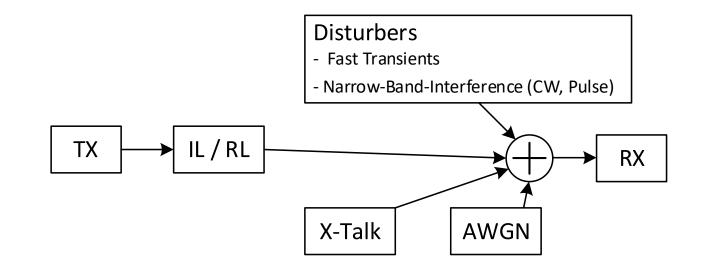
 Propose transmit levels for 3 and 6 GBaud TDD proposal sufficient for Automotive Channel Model


## TDD Proposal - Coding and Data Rates

|                           |      |                          |     | Dn              |     |                  |       |              |        |              | Up              |   |     |   |              |      |                |                |         |         |               |                                      |                           |                                      |                           |
|---------------------------|------|--------------------------|-----|-----------------|-----|------------------|-------|--------------|--------|--------------|-----------------|---|-----|---|--------------|------|----------------|----------------|---------|---------|---------------|--------------------------------------|---------------------------|--------------------------------------|---------------------------|
|                           |      |                          |     | Per RS frame    |     |                  | Burst |              |        | Per RS frame |                 |   |     |   |              |      |                |                |         |         |               |                                      |                           |                                      |                           |
| Dn Line<br>Rate<br>[Gbps] | Rate | Resync<br>Header<br>[ns] |     | 64/65<br>blocks | 1 1 | Payload<br>bytes | 1 1   | RS<br>frames |        |              | 64/65<br>blocks |   |     |   | RS<br>frames |      | Length<br>[ns] | Target<br>[ns] | Dn [ns] | Up [ns] | Total<br>[ns] | Dn<br>Payload<br>per burst<br>[bits] | Dn Data<br>Rate<br>[Gbps] | Up<br>Payload<br>per burst<br>[bits] | Up Data<br>Rate<br>[Mbps] |
| 3                         | 3    | 189.333                  | 104 | 15              | 1   | 122              | 8     | 25           | 26000  | 8666.67      | 15              | 1 | 122 | 8 | 1            | 1040 | 346.67         | 9600           | 8856.0  | 536.0   | 9600.0        | 24000                                | 2.500                     | 960                                  | 100.0                     |
| 6                         | 3    | 189.333                  | 104 | 15              | 1   | 122              | 8     | 50           | 52000  | 8666.67      | 15              | 1 | 122 | 8 | 1            | 1040 | 346.67         | 9600           | 8856.0  | 536.0   | 9600.0        | 48000                                | 5.000                     | 960                                  | 100.0                     |
| 12                        | 3    | 189.333                  | 104 | 15              | 1   | 122              | 8     | 100          | 104000 | 8666.67      | 15              | 1 | 122 | 8 | 1            | 1040 | 346.67         | 9600           | 8856.0  | 536.0   | 9600.0        | 96000                                | 10.000                    | 960                                  | 100.0                     |

All required MAC rates can be achieved with 3 and 6 GBaud

#### **Channel Model**


- Channel model
  - IL / RL for cable & MDI
  - Disturbances: X-Talk, Automotive Environment
  - Noise floor (AWGN)
- Disturbers are added at the receiver side (after signal has been attenuated)
  - X-Talk
  - Disturber Fast Transient
  - Disturber NBI
- Disturbers given as signal component
  - STP has also common mode signal, which will show higher X-Talk and disturber levels
  - Coax is single-ended system



|      | X-Talk    | Fast<br>Transients | NBI       |
|------|-----------|--------------------|-----------|
| Coax | LF higher | 40mVpp             | LF 80mVpp |
|      | HF lower  | Longer tail        | HF 16mVpp |
| STP  | LF lower  | 6mVpp              | LF 50mVpp |
|      | HF higher | Shorter tail       | HF 32mVpp |

#### **Channel Model**

- NBI:
  - Present over all frequencies
  - Also at / close to half baud rate
- Fast Transients:
  - Lower frequency disturbance
  - For higher baud rate signal 3/6 GBaud, significant suppression by filtering is feasible
- In real-world situations, all disturbances are active concurrently
- Transmit amplitude needs to be large enough for RX to decode error-free in presence of all disturbers
  - Margin for Coax drives the amplitude selection



|      | X-Talk    | Fast<br>Transients | NBI       |
|------|-----------|--------------------|-----------|
| Coax | LF higher | 40mVpp             | LF 80mVpp |
|      | HF lower  | Longer tail        | HF 16mVpp |
| STP  | LF lower  | 6mVpp              | LF 50mVpp |
|      | HF higher | Shorter tail       | HF 32mVpp |

## **Analog Parameters**

|                      | 2.5Gbps / 100Mbps | 5.0Gbps    | 10.0Gbps   |
|----------------------|-------------------|------------|------------|
| TX Output Swing STP  | 0.7Vppdiff        | 0.9Vppdiff | 1.2Vppdiff |
| TX Output Swing Coax | 0.35Vpp           | 0.45Vpp    | 0.6Vpp     |
| Line Rate            | 3 GBaud           | 6 GBaud    | 6 GBaud    |
| Modulation           | PAM2              | PAM2       | PAM4       |

- Multi-MDI PHYs are assumed (which could operate on STP and Coax)
- Coax transmit amplitude is always 50% of STP

### Summary

- This presentation presented a baseline proposal for TX levels for all three MAC rates
  Downstream
  - TX level Upstream is equivalent to TX level 2.5Gbps Downstream

# Thank You!