Modulation for 2.5 Gbps Data Rate

PAM4 vs PAM2

Hossein Sedarat

ETHΞRΝΟVΙΔ®

November 2024

Motivation

- Using IEEE 802.3ch specifications for downstream direction of 802.3dm offers great benefits:
 - Already ratified through rigorous IEEE adoption process
 - Proven technology with proven interoperability and customer traction
 - Much faster adoption path for 802.3dm
- 802.3ch calls for PAM4 modulation for 2.5 Gbps data rate
- There have been some suggestions that PAM2 may be a better option in 2.5 Gbps mode of 802.3dm
- A comparison of PAM2 and PAM4 is needed

Outline

- SNR analysis for PAM2 and PAM4
- Complexity comparison
- An overview of EMI

Conclusions

Insertion Loss

 At this point, there is no consensus for the limit of insertion loss

 The current proposals seem to suggest a loss of ~24 dB around 2.8 GHz

 This presentation considers a scaled version of 802.3ch limit that meets loss of 24 dB at 2.8 GHz

Target SNR

- BER = 10^{-12}
- FEC dedicated to non-Gaussian noise sources
- Noise margin = 0 dB
- → SNR at decision point:
 - PAM2 = 17 dB
 - PAM4 = 24 dB

Noise Budget

Salz SNR analysis		
Modulation	PAM2	PAM4
Symbol Rate (GHz)	5.625/2	5.625/4
Slicer SNR (dB)	17.0	24.0
Tx Power (dBm)	0.0	0.0
Rx Power (dBm)	-8.9	-6.9
Noise Floor (dBm/Hz)	-120.1	-120.9
Input SNR (dB)	19.7	25.6

PHY Power and Complexity

PHY complexity and power consumption is a complex function of many factors, heavily dependent on architecture, design and implementation techniques

Rough, high-level and general trends:

- Symbol rate: complexity and power grow at least linearly for both analog (sampling rate) and digital (clock frequency) blocks
- Noise budget and dynamic range:
 - Analog: every additional 6 dB of dynamic range results in at least twice the complexity and power consumption
 - Digital: power and complexity grows linearly with dynamic range. 6 dB increase in dynamic range translates to less than 20% more complexity

Power and Complexity: PAM2 vs PAM4

- Symbol rate: PAM4 = 0.5 * PAM2
 - → power and complexity: PAM4 = 0.5*PAM2
- Noise budget: PAM4 < PAM2 + 6 dB
 - → power and complexity: PAM4 < 2*PAM2

→ Overall power and complexity: <u>PAM4 < PAM2</u>

Narrowband Interferers

- The stringent EM immunity requirement demands a robust receiver with adaptive filtering of narrowband interferers
- The legacy analog receivers based on CTLE are suitable only for traditional SERDES applications with no tough immunity requirements
- PAM4 advantages:
 - Receiver needs only half the bandwidth and not exposed to interferers at high frequencies
 - Easier to create high quality notch filters to block narrowband interferers, particularly at lower frequencies
 - Received signal from link-partner is stronger resulting in higher signal-to-interferer ratio and requiring lower relative expansion of headroom

Summary

- A comparison of two different modulations for 2.5Gbps PHY is presented
- PAM4 receiver is less complex and less power hungry
- A robust automotive receiver requires adaptive notching of narrowband interferers, favoring DSP-based solutions
- PAM4 modulation offers benefits in accommodating and blocking EM interferers

Conclusion

• For downstream modulation in 2.5G date rate, there is no compelling reason not to use PAM4 as specified by 802.3ch

- Using the IEEE 802.3ch specification in all data rates of 802.3dm in downstream direction offers
 - A high-quality specifications that is approved through rigorous IEEE adoption process
 - A proven technology with proven interoperability and robust customer traction
 - Much faster adoption path for 802.3dm

