

A Simplified Training Flow for 5/2.5G

Motivation

- Objective :
 - Demonstrate that the 5/2.5G training sequence can be significantly simplified
 - Lowering the implementation cost, reducing the failure rate, and improving cross-vender interoperability
- This is a follow-up presentation to
 - https://www.ieee802.org/3/dm/public/0925/Razavi_3dm_01a_092025.pdf
 - It is a work in progress

Training signaling in 5/2.5G

- During 5/2.5G training, PMA uses the same signaling through the training
 - PAM2 signaling in High Data Rate (HDR) direction
 - DME signaling in Low Data Rate (LDR) direction
- The PCS determines the interpretation of the signals
 - Training signals include SEND_T, and SEND_N
- COUNTDOWN/TX_SWITCH are used when switching from SEND_T to SEND_N

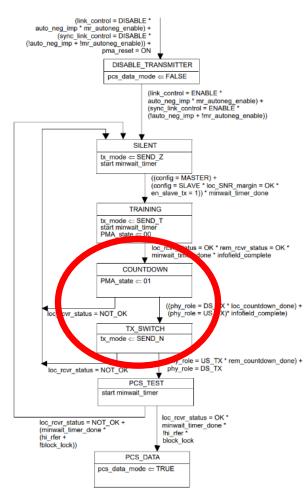


Figure 201–15—PHY Control state diagram

PMA Training: The same signaling during training

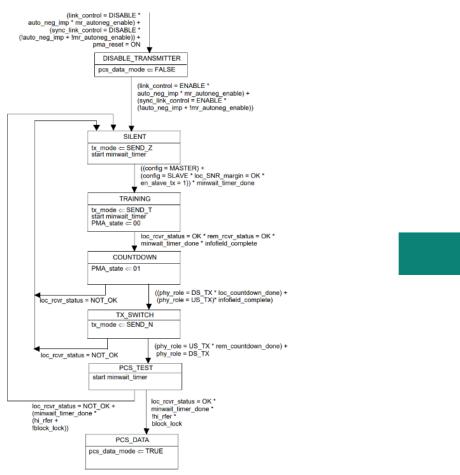
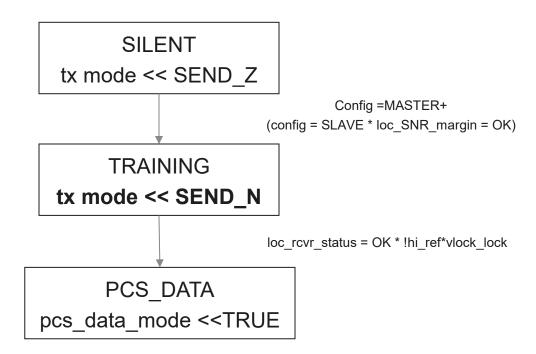
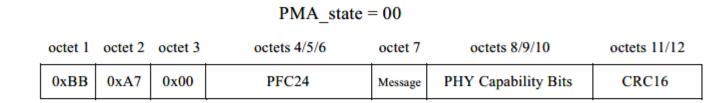




Figure 201-15-PHY Control state diagram

PCS signaling during the training

- These sets of data are exchanged during training
 - Messages about the training state machine
 - Frame boundaries and counters: PFC24/DataSwPFC24
 - Preferred PHY settings : interleaver, pre-coder,...

Figure 149–27—Infofield TRAINING format

Figure 149–28—Infofield COUNTDOWN format

Messages are NOT required when training starts with SEND_N

- loc_rcvr_status :
 - only used to transition into COUNTDOWN state
 - No COUNTDOWN means no need for this message
- en_slave_tx :
 - There is no echo canceler in ACT
- timing_lock_OK
 - This is just an informative bit. Slave does not transmit till its timing recovery is locked

Table 149–10—Infofield message field valid MASTER settings

PMA_state<7:6>	loc_rcvr_status	en_slave_tx	reserved	reserved	reserved	reserved	
00	0	0	0	0	0	0	
00	0	1	0	0	0	0	
00	1	1	0	0	0	0	
01	01 1		0	0	0	0	

Table 149–11—Infofield message field valid SLAVE settings

PMA_state<7:6>	loc_rcvr_status	timing_lock_OK	reserved	reserved	reserved	reserved	
00	0	0	0	0	0	0	
00	0	1	0	0	0	0	
00	1	1	0	0	0	0	
01	1	1	0	0	0	0	

No COUNTDOM when training starts with SEND_N

No need for info-field COUNTDOWN format

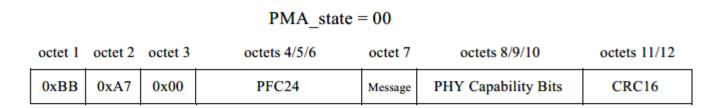


Figure 149-27—Infofield TRAINING format

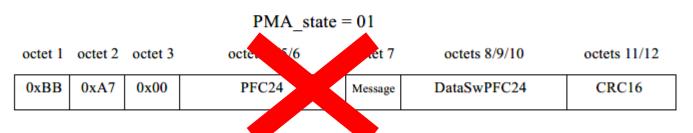


Figure 149–28—Infofield COUNTDOWN format

Detecting the frame boundaries when training starts with SEND_N

- OAM is placed in pre-determined position
- This can be used to detect the start of the frame

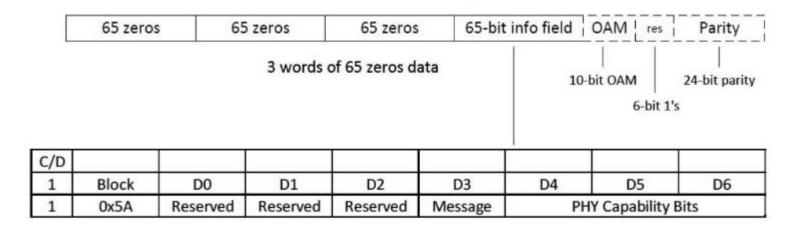


Figure 201–14—Training frame

Exchange of PHY capabilities when training starts with SEND_N

- There is no option for PHY settings in the LDR direction
- There are PHY settings that will be set by PHY capability bits in the HDR direction
 - It is not clear how many of PHY settings are going to stay in the HDR direction
 - Capability bits can be transmitted by OAM
- The HDR receiver can detect if these settings have been applied

Table 149–12—PHY Capability Bits

octet 8					octet 9							octet 10											
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
VendorSpecificData								Reserved		InterleaverDenth	- 1000000	Dracode Sel	SlowWakeRequest	EEEen	OAMen								

PMA/PCS Training: The training can be simplified significantly

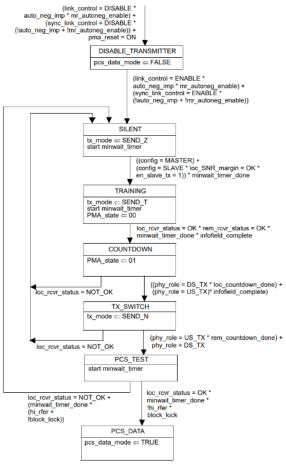
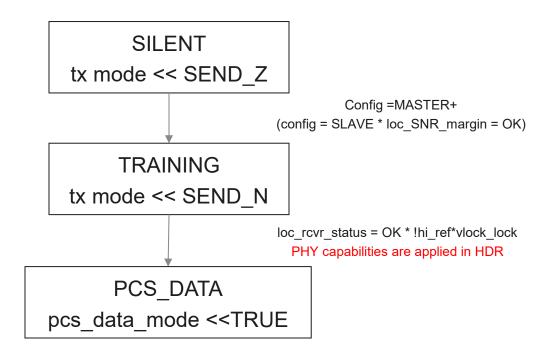



Figure 201-15—PHY Control state diagram

Conclusion

The 5/2.5G training sequence can be significantly simplified

Looking forward for your comments and feedback