GMSLE Baseline Proposal for IEEE 802.3dm

Jay Cordaro, Analog Devices 802.3dm Task Force Ad Hoc February 27, 2025

Contributors and Supporters

Contributors

Nick Chimento, Analog Devices

Martin Pechanec, Analog Devices

George Zimmerman, CME Consulting

Mike Fuchs, Analog Devices

Supporters

Outline

- ► Motivation
- ► FDD SerDes Baseline
 - Encoding Detail
 - GMSLE vs GMSL3/2
- ► RL/IL
- ► Power Spectral Density
 - Downstream PSD
 - Upstream PSD
- ► Relative Complexity Analysis
- **▶** Conclusion

Motivation

- ► The 802.3dm Task Force is going down two parallel paths, ACT and TDD, with little consensus or convergence
- ► GMSL3/2 is the Automotive SerDes leader with a proven track record in the field, and has demonstrated EMC and reliability with > 1.1 billion GMSL3/2 links shipped
- ► Contribute GMSLE (GMSL-Ethernet) proposal to build consensus
- ▶ Leverage GMSL while incorporating some of the excellent work done in this Task Force
- Looking for contributors and to build consensus
- ▶ This contribution to the .dm Task Force is separate from OpenGMSL
 - If adopted, an implementer does not have to endorse, license, or build an OpenGMSL product

GMSLE FDD SerDes Baseline

Ethernet MAC Interface		XGMII							
Line Coding		64B/65B encoding (see detail, next slide)							
Duplexing		FDD with Echo Subtraction/Partial Echo Cancellation							
Link Rates and Modulation		Forward Link: 2.5Gbps NRZ, 5Gbps NRZ, 5Gbps PAM4 (option) ,10Gbps PAM4 Reverse Link: 100Mbps							
Scrambler		Downstream: 1+x ¹³ +x ³³ Upstream: 1+x ²⁰ +x ³³							
PHY Transmit Parameters		Rate	Mod	Encoding	FEC RS(n,k)	Baud Rate	TX Power	Burst Noise Protection	
	Downstream high-speed link rate:	2.5Gbps 5Gbps 5Gbps 10Gbps	NRZ NRZ PAM4 PAM4	15x65b+1 bit OAM 2x(15x65b+1b OAM) 2x(15x65b+1b OAM) 4x(15x65b+1b OAM)	RS(144,122) L=1 m=8 RS(144,122) L=2 m=8 RS(144,122) L=2 m=8 RS(144,122) L=4 m=8	2.5Gbps: 3GBaud 5Gbps: 6GBaud 5Gbps: 3GBaud 10Gbps: 6GBaud	-4dBm -4dBm -2dBm -2dBm	88 PAM-2 symbols, 29.3ns 176 PAM-2 symbols, 29.3ns 88 PAM-4 symbols, 29.3ns 176 PAM-4 symbols, 29.3ns	
	Upstream low- speed link rate:	100Mbps	DME	3x65b+13bit OAM	RS(30,26) L=1 m=8	100Mbps: 250MHz	-8dBm	16 DME Symbols, 64ns	
Low complexity POC		Yes, single inductor							
XTAL-less Camera PHY?		Yes, supported							

Encoding Detail

Downstream High-speed Link Note: Figure shown for L=1

Upstream Low-speed Link

GMSLE Architecture vs GMSL3/2

	GMSLE	GMSL3/2	Notes	
Media Interfaces	XGMII	CSI-2		
Line Coding	64B65B	9b10b	9b10b has higher overhead but provides shorter run lengths and DC balance	
Transmit Scramblers	Downstream: 1+x ¹³ +x ³³ Upstream: 1+x ²⁰ +x ³³	Downstream: 1+x ³⁹ +x ⁵⁸ Upstream: 1+x ³⁹ +x ⁵⁸		
Downstream Baud Rates	3GBaud/6Gbaud	3GBaud/6GBaud	Same Baud rate	
Upstream/Reverse	250MBaud DME 100Mbps	187.5MBaud NRZ > 100Mbps	½ bit per Baud with DME	
Equalization	Analog CTLE/HPF +DFE Digital also possible	Analog CTLE/HPF +DFE	Same AFE & EQ structure	
Downstream/Forward FEC	RS(144,122) L=1/2/4 m=8	RS(128,120) m=8	GMSL3/2 has CRC+ARQ on control channel for FuSa. Ethernet does not have ARQ – need longer FEC length for Ethernet	
Upstream/Reverse FEC	RS(30,26) m=8	none		
Sideband channels	Low-rate OAM	I2C, SPI, GPIO, etc.	GMSL3/2 has low latency sideband channels	

Duplexing Architecture

Possible GMSLE Duplexing Implementation

- ► Echo subtraction is a robust and low-complexity method for duplexing high data rate downstream data and low data rate upstream data on a link segment.
- ▶ At the Host PHY, analog hybrid is sufficient no digital or analog delay line EC is required
- ▶ At the Camera PHY
 - ► Echo subtraction is not required
 - ► Equalization is not required, a matched filter is sufficient

Proposed Insertion Loss Cable Specification

- ▶ 15m of coaxial link segment, with up to 4 inline connectors supported
- ► Propose to adopt Zerna's coax channel insertion loss limit contribution from January interim for 5G(NRZ) and 10G(PAM4) rates [1]
- ► Add new insertion loss limit for 2.5G(NRZ) & 5G(PAM-4) ending at 2GHz for low cost applications
 - Lower Baud Rate allows more insertion loss for 3MP&5MP cameras while still allowing analog receiver

$$IL_{5G(NRZ)/10G(PAM4)}(f[MHz]) = -\left(0.3 + 0.345\sqrt{f} + 0.000825 * f + \frac{0.48}{\sqrt{f}}\right) for 2MHz - 3.5GHz$$
 [1]

$$IL_{2.5G(NRZ)/5G(PAM4)}(f[MHz]) = - \left(3.7 + 0.27\sqrt{f} + 0.0022*f\right) \quad for \ 2MHz - 2GHz$$

Proposed Return Loss MDI Specification

- ► Use adopted MDI Return Loss Limit for 2.5G(NRZ) and 5G(NRZ) rates, from 10MHz 4GHz[3]
- ► Propose extend return loss limit for 5G(PAM4) & 10G(PAM4) above 400MHz

$$RL_{2.5G(NRZ)/5G(NRZ)}(f[MHz]) = \begin{cases} -(18 + 20log_{10}\left(\frac{f}{50}\right) & for \ 10MHz - 50MHz \\ -18 & for \ 50MHz - 400MHz \\ -\left(18 - 13log_{10}\left(\frac{f}{400}\right)\right) & for \ 400MHz - 4000MHz \end{cases}$$

$$RL_{10G(PAM4)/5G(PAM4)}(f[MHz]) = \begin{cases} -(18 + 20log_{10}\left(\frac{f}{50}\right) & for \ 10MHz - 50MHz \\ -18 & for \ 50MHz - 1000MHz \\ -(23.33 + 0.0053 * f) & for \ 1000MHz - 2500MHz \\ -10 & for \ 2500MHz - 4000MHz \end{cases}$$

Transmit PSD High Speed Downstream NRZ

Transmit PSD High Speed Downstream PAM-4

12

Transmit PSD Upstream

13

Relative Complexity Analysis, Camera PHY

	GMSLE	ACT	TDD
Camera Downstream highspeed TX Complexity	Least complex Lower PAPR 2.5Gbps NRZ, 5Gbps NRZ opt.	Slightly more complex Higher PAPR PAM4 @ 2.5 & 5Gbps	More complex TDD
Camera Upstream lowspeed RX Complexity	Much Less ComplexAnalog Matched FilterNo EQ Required	Much Less ComplexAnalog Matched FilterNo EQ Required	More complexTDDEqualization
Camera Power Consumption	Lowest	Lowest	Highest, Higher Peak PowerTDDEqualization
Camera LS RX FEC	n=30,k=26, m=8, t=2	n=50, k=46, m=6, t=2	n=130, k=122, m=8, t=4
Camera LS RX FEC decoder area complexity^	1.0x 1 symbol/clock impl @125MHz	0.71x 1 syml/clk @117.1875 MHz	2.66x Much more complex
Upstream burst protection	64ns	51.2ns less than GMSLE	10.6ns much less than GMSLE
Crystal-less Camera Serializer	Simple Mass production (GMSL)	Simple	Possible, but more Complex
Upstream latency (including FEC)	8µs	Similar to GMSLE (est)	~9.6µs (est., based on [2])
Summary	 Lowest PAPR Lowest Complexity for 3MP 2.5Gbps and 8Mp 5Gbps cameras Highest burst protection 	Slightly higher PAPR Low Complexity	Highest complexity. Raises cost, power for 3MP 2.5Gbps and 8MP 5Gbps cameras. XTAL-less more complex. Lower burst protection margin with > 2x the complexity

Relative Complexity Analysis, HS RX, LS TX PHY

	GMSLE	ACT	TDD
POC	Small, single inductor	Small, single inductor	Smallest, single inductor
Downstream HS Receiver Complexity	 Least complex More Euclidean dist. @2.5 Gbps & 5Gbps PAM2 mode Analog or Digital EQ OK 	 Most complex Less Euclidean distance @2.5 & 5 Gbps Long digital FFE + 1-tap MLSE or DFE (or DFFE) 	More complex TDD
Downstream HS FEC	n=144,k=122, m=8, t=11	n=360,k=326, m=10, t=17	n=130,k=122, m=8, t=4
Downstream HS RX FEC Correctable burst length ^^	29.3ns (L=1,2,4)	60.4ns (L=1,2,4 in 2.5/5/10Gbps)	10.6ns (L=1,2,4)
Downstream HS RX FEC Decoder Area Complexity^	1.0x	1.6x	0.66x
Downstream Latency (including FEC)	2.5Gbps: 2.75µs 5Gbps: 1.8µs (L=2) 10Gbps: <2µs (L=4)	2.5Gbps: 4.096µs^^^ 5 Gbps: 2.764µs (L=2) 10Gbps: 2.048µs (L=4)	Claimed 1µs from [2]
Downstream Summary	Lowest complexity Analog or digital EQ OK	Higher complexity Digital ADC and EQ required	High Complexity, TDD Lower burst noise protection
Reliability (DFMEA)	Proven	Limited volume	Not proven
Units Shipped	Base architecture (GMSL): > 1.1 Billion links	Base architecture (ch): 100k (est.)	0

^equivalent 2 input NAND gates area + two port memory area in same geometry. 750MHz clock in all designs ^^^ from 802.3 clause 149 table 149-20

Conclusion

- ► GMSLE meets Task Force Objectives
- GMSLE operates with IL and RL limits presented
- GMLSE is the lowest complexity at the camera and the host, of all options presented
- ► GMSLE builds on GMSL's proven reliability, EMC, and volume shipped
- ► For the Plenary Meeting we will present:
 - Noise and Emissions Considerations for Coaxial Link Segments, POC measurements and recommendations for 802.3dm
 - Simulation Results with Noise for AWGN, CW, Impulse, and POC noise
- ► Looking for collaborators and building consensus

References

[1] "Cable Channel IL and RL limits" Zerna, pp 6 802.3dm Cable Channel IL and RL limits

[2]"TDD Baseline Proposal for 802.3dm" Chini, Tazebay et al pp 10 TDD Baseline Proposal for 802.3dm

[3] "MDI Return Loss Limit" Jonsson, Chini et all pp 2 <u>Proposed text for MDI Return Loss</u>