

Framing for Asymmetric Ethernet links

Elvio Serrano, Alireza Razavi, Ragnar Jonsson

10/10.2024

Contributors

- Paul Fuller (Marvell)
- Peter van Dyck (Marvell)
- Bizhan Abedinzadeh (Marvell)
- Alejandro Castrillon (Marvell)

Introduction

- ACT design has already shared in the last standard meeting
- High data rate (HDR) path framing matches the 802.3ch specification
- In this presentation, we go over the framing for both data mode and training in low data rate (LDR) path
- https://www.ieee802.org/3/dm/public/0924/jonsson 3dm 01 09 15 24.pdf

Framing objectives and assumption

- The framing that supports
 - FEC latency < 2us</p>
 - Burst error correction > 50ns
- No OAM is needed for side channel (from switch to camera)

Low data framing data mode

- Symbol rate is 117.1875 MHz
- Differential Manchester encoding
- Correction of impulse noise errors lasting from 51ns (6 bits) to 85ns (10 bits).
- Decoding latency of approximately1.5 us

LDR vs 10G training frame

10G Training Frame

100M Training Frame

LDR vs 5G training frame

5G Training Frame

100M Training Frame

LDR vs 2.5G training frame

2.5G Training Frame

100M Training Frame

Conclusion

- High data rate (HDR) path framing matches the 802.3ch specification
- Low data rate path framing
 - FEC Latency = 1.5 us
 - 17% overhead
 - Burst error correction 51-85ns
 - No OAM from switch to camera
- The training frame in low data rate path is
 - independent of speed of HDR path
 - Aligned with framing of HDR path
- We welcome collaboration on framing in both data mode and training