100BASE-CU Dual Mode Proposal

Patrick Stanley, Elastic Networks, pstanley@elastic.com (678)297-31.03
Baseline Proposal

100 Mbps Dual-Mode Proposal

Why Consider this proposal?

>PHY Driven by Market Requirements

- Service Providers Want to Deliver Bandwidth Intensive Services
- Need the Reach Required to Get to the Customer
- Want Flexible Symmetry to Deploy the Broadest Applications
- Multi-Mode PHY Provides One Solution to Meet All Objectives
> A Multi-vendor Technology: Supports Free Market Competition
$>$ Advances the State of the Art

100BASE-Cu Dul/-Mode Component Technologjes

$>$ 100BASE-Cu Dual-Mode allows the Application to decide which attributes are most important

- FDD
- Short Reach
- Fixed Symmetry
- Not self-NEXT Limited
- Constant latency
- Dynamic TDD
- Long Reach
- Flexible Symmetry Ratios
- Automatic Spectral Compatibility
- Statistical Advantage in a High Crosstalk Environment

100BASE-Cu DLIA/-Mode Component Technologjes

Loop Length in kFt 0

10/100BASE-T LAN

TDD 100B-Cu

100BASE-Cu Dual Mode Layer Model

Scrambler, $x^{23}+x^{18}+x$

$>$ Self Synchronizing

> Shortened Reed Solomon RS(255,255-N+K)
$>$ Codeword Length, $\mathrm{N}=200$ Octets, Data Length, $\mathrm{K}=$ 184 Octets => 16 Redundancy Octets = Can correct a maximum of 8 Octets per block

100BASE-Cu FDD Mode Frame

PMS-TC Transmission Frame Format per draft trial use VDSL standard

Single Latency, optional Fast Channel not used (Or us fast channel with second MII?)

100BASE-Cu TDD Mode Superframe (Burst)

HDLC Frames

100BASE-Cu Burst:
1 to 256 PMS-TC Frames per Burst (Superframe) Max
concatenated into

burst

Preamble: 128 Baud BPSK, 7 Byte Header
$>$ Preamble contains BPSK for timing recovery
>HDLC uses byte insertion
$>$ Superframe header, which reports buffer fill, piggybacks onto user data bursts

100BASE-Cu Superframe

> PMS-TC framing per VDSL Trial Use Standard
$>$ Superframe with a special header added to support TDD

- 128 BPSK symbols for timing recovery
- 7 byte superframe header
- 1 to 256 standard PMS-TC frames
- Clear EOC protocol as specified in G.997.1

Convolutional Interleaver

S - incoming codeword length
I - interleaver block length, octets
D - interleaving depth, octets
M - interleaving depth index

Parameter	Value	Notes
Block Length (I)	$I=\mathrm{S} / 8, \mathrm{~S} / 4$ or S/2, octets	$\mathrm{S}=200$
Depth(D)	$\mathrm{D}=\mathrm{M} \times \mathrm{I}+1$, octets	$\mathrm{M}=0-64$, programmable
Erasure Correction (E)	$\mathrm{E}=\mathrm{floor}[\mathrm{t} \times \mathrm{I} / \mathrm{S}] \times(\mathrm{M} \times \mathrm{I}+1)$, octets	$\mathrm{t}=8$ (RS error correction ability)
End-to-End Delay (DL)	$\mathrm{DL}=\mathrm{M} \times \mathrm{I} \times(\mathrm{I}-1)$, octets	
Interleaver Memory Size	$\mathrm{MEM}=\mathrm{M} \times \mathrm{I} \times(\mathrm{I}-1) / 2$, octets	

D-1 octets separate any 2 sequential octets in RS codeword

> E sequential octets correctable, so noise pulse of duration Ex8/R, where $\mathbf{R}=$ bit rate, is protected against.
> Examples at 100Mbps:

- Minimum protection: $\mathrm{M}=0$ disables interleaver, 0.32 uSec protection
- Maximum protection: $M=64$, $\mathrm{I}=\mathrm{S} / 2,2 \mathrm{mSec}$ protection.
- Costs: 50 mSec Latency, 512 KB of memory

100BASE-Cu Dual Mode Provision or Auto

> Proposed Operational Modes (others may be suggested)

- Auto-Sense
- Operates in Dynamic TDD mode, with Spectrum Manager listening for coupling with 988 plan (Additional provisionable option can limit Upstream frequency range to favor asymmetric service, heavier on downstream)
- When coupled with 998 plan, switches to EoVDSL-like FDD, with Spectrum Manager listening for opportunity to switch back to dynamic TDD
- Provisionable (Handshake procedure - G.994.1?) - Service Provider can provision to FDD mode or Dynamic TDD only mode
- Reach extension
- When Operating in FDD mode, automatically switches to dynamic TDD mode for long loops > 4-6Kft (Estimate Loop Length - Handshake procedure - G.994.1?)
$>$ FIFO builds burst from incoming packets in each direction
> If user traffic demand is symmetric, then both directions use full bursts - symmetric bandwidth on loop (if provisioned for symmetry service)
> If user traffic demand is heavily in one direction, that direction has full bursts, and return path has minimum bursts containing ACKs and status information

Summary

> This Proposed PHY Will Meet All of the EFM Copper Objectives:

- PHY for single Pair Non-loaded Voice Grade Copper, Distance >= 2500 Feet With >= 10 mbps Aggregate Bit Rate
- PHY for Single Pair Non-loaded Voice Grade Copper, Distance >=4600m, $0.4 \mathrm{~mm}>=256 \mathrm{kbps}$ (Can achieve 1Mbps for self-disturber case)
- PHY for Single Pair Non-loaded Voice Grade Copper, Distance >=3700m, $0.5 \mathrm{~mm}>=4 \mathrm{mbps}$
- Can support optional specification for combined operation on multiple copper pairs
- The point-to-point copper PHY is Compliant with spectrum management restrictions imposed by operation in public access networks, including: Recommendations from NRIC-V (USA), ANSI T1.417-2001 (for frequencies up to 1.1 MHz), Frequency plans approved by ITU-T SG15/Q4,T1E1.4 and ETSI/TM6
> Offers the Service Provider the Most Flexible Solution

