
IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
1 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4. Media Access Control

Annex 4A

(normative)

Simplified full duplex media access control

Editors’ Notes: To be removed prior to final publication.

References:

None.

Definitions:

None.

Abbreviations:

None.

Issues:

None.

Revision History:

Draft 3.1 January 2003 Revised draft for IEEE 802.3 Working Group Ballot Recirculation, incorporating
comments resolved at the September, 2003 Interim meeting in Portonovo, Italy.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This annex is based on the Clause 4 MAC, with simplifications for use in networks that don’t require the
half-duplex operational mode. This annex stands alone and does not rely on information within Clause 4 to
be implemented.

4A.1 Functional model of the MAC method

4A.1.1 Overview

The architectural model described in Clause 1 is used in this clause to provide a functional description of the
LAN CSMA/CD full duplex MAC sublayer.

The MAC sublayer defines a medium-independent facility, built on the medium-dependent physical facility
provided by the Physical Layer, and under the access-layer-independent LAN LLC sublayer (or other MAC
client). It is applicable to a general class of local area broadcast media suitable for use with the full duplex
media access discipline known as Carrier Sense Multiple Access with Collision Detection (CSMA/CD)dis-
cipline.

The LLC sublayer and the MAC sublayer together are intended to have the same function as that described
in the OSI model for the Data Link Layer alone. In a broadcast network, the notion of a data link between
two network entities does not correspond directly to a distinct physical connection. Nevertheless, the The
partitioning of functions presented in this standard requires two main functions generally associated with a
data link control procedure to be performed in the MAC sublayer. They are as follows:

a) Data encapsulation (transmit and receive)
1) Framing (frame boundary delimitation, frame synchronization)
2) Addressing (handling of source and destination addresses)
3) Error detection (detection of physical medium transmission errors)

b) Media Access Management
1) Medium allocation (collision avoidance)
2) Contention resolution (collision handling)

c) Media access management (physical layer contention)

This MAC does not support the half duplex mode of operation so there is no need for collision avoidance or
handling. However, this MAC does have the ability to avoid contention within the physical layer. Therefore,
Media Access Management comprises the transmission of bits to the physical layer and delaying any trans-
mission for an interframe gap or for a longer period of time based on contention within the physical layer.

An optional MAC control sublayer, architecturally positioned between LLC (or other MAC client) and the
MAC, is specified in Clause 31Clause 31 and Clause 64. This MAC Control sublayer is transparent to both
the underlying MAC and its client (typically LLC). The MAC sublayer operates independently of its client;
i.e., it is unaware whether the client is LLC or the MAC Control sublayer. This allows the MAC to be speci-
fied and implemented in one manner, whether or not the MAC Control sublayer is implemented. References
to LLC as the MAC client in text and figures apply equally to the MAC Control sublayer, if implemented.

This standard provides for two modes of operation of the MAC sublayer:

a) In half duplex mode, stations contend for the use of the physical medium, using the CSMA/CD algo-
rithms specified. Bidirectional communication is accomplished by rapid exchange of frames, rather
than full duplex operation. Half duplex operation is possible on all supported media; it is required on
those media that are incapable of supporting simultaneous transmission and reception without inter-
ference, for example, 10BASE2 and 100BASE-T4.

b) The full duplex mode of operation can be used when all of the following are true:

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
3 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1) The physical medium is capable of supporting simultaneous transmission and reception with-
out interference (e.g., 10BASE-T, 10BASE-FL, and 100BASE-TX/FX).

2) There are exactly two stations on the LAN. This allows the physical medium to be treated as a
full duplex point-to-point link between the stations. Since there is no contention for use of a
shared medium, the multiple access (i.e., CSMA/CD) algorithms are unnecessary.

3) Both stations on the LAN are capable of and have been configured to use full duplex operation.

The most common configuration envisioned for full duplex operation consists of a central bridge (also
known as a switch) with a dedicated LAN connecting each bridge port to a single device.

The formal specification of the MAC in 4A.2 comprises both the half duplex and full duplex modes of oper-
ation. The remainder of this clause provides a functional model of the CSMA/CD this MAC method.

4.0.1 CSMA/CD operation

4A.1.2 Full duplex operation

This subclause provides an overview of frame transmission and reception in terms of the functional model of
the architecture. This overview is descriptive, rather than definitional; the formal specifications of the opera-
tions described here are given in 4A.2 and 4A.3. Specific implementations for CSMA/CD full duplex mech-
anisms that meet this standard are given in 4A.4. Figure 1–1 Figure 4A–1 provides the architectural model
described functionally in the subclauses that follow.

The Physical Layer Signaling (PLS) component of the Physical Layer provides an interface to the MAC sub-
layer for the serial transmission of bits onto the physical media. For completeness, in the operational
description that follows some of these functions are included as descriptive material. The concise specifica-
tion of these functions is given in 4A.2 for the MAC functions and in Clause 7 for PLS.

Transmit frame operations are independent from the receive frame operations. A transmitted frame
addressed to the originating station will be received and passed to the MAC client at that station. This char-
acteristic of the MAC sublayer may be implemented by functionality within the MAC sublayer or full
duplex characteristics of portions of the lower layers.

4.0.1.1 Normal operation

4.0.1.1.1 Transmission without contention

Transmit frame operations are independent from receive frame operations.

4A.1.2.1 Transmission

When a MAC client requests the transmission of a frame, the Transmit Data Encapsulation component of the
CSMA/CD full duplex MAC sublayer constructs the frame from the client-supplied data. It prepends a pre-
amble and a Start Frame Delimiter to the beginning of the frame. Using information provided by the client,
the CSMA/CD MAC sublayer also appends a PAD at the end of the MAC information field of sufficient
length to ensure that the transmitted frame length satisfies a minimum frame-size requirement (see
4.2.3.34A.2.3.2.4). It also prepends destination and source addresses, the length/type field, and appends a
frame check sequence to provide for error detection. If the MAC supports the use of client-supplied frame
check sequence values, then it shall use the client-supplied value, when present. If the use of client-supplied
frame check sequence values is not supported, or if the client-supplied frame check sequence value is not
present, then the MAC shall compute this value. The frame Frame transmission may be initiated once there
is then handed to no contention at the physical layer and after the Transmit Media Access Management com-
ponent in interframe delay, regardless of the MAC sublayer for transmissionpresence of receive activity.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

In half duplex mode, Transmit Media Access Management attempts to avoid contention with other traffic on
the medium by monitoring the carrier sense signal provided by the Physical Layer Signaling (PLS) compo-
nent and deferring to passing traffic. When the medium is clear, frame transmission is initiated (after a brief
interframe delay to provide recovery time for other CSMA/CD MAC sublayers and for the physical
medium). The MAC sublayer then provides a serial stream of bits to the Physical Layer for transmission.

In half duplex mode, at an operating speed of 1000 Mb/s, the minimum frame size is insufficient to ensure
the proper operation of the CSMA/CD protocol for the desired network topologies. To circumvent this prob-
lem, the MAC sublayer will append a sequence of extension bits to frames which are less than slotTime bits
in length so that the duration of the resulting transmission is sufficient to ensure proper operation of the
CSMA/CD protocol.

In half duplex mode, at an operating speed of 1000 Mb/s, the CSMA/CD MAC may optionally transmit
additional frames without relinquishing control of the transmission medium, up to a specified limit.

In full duplex mode, there is no need for Transmit Media Access Management to avoid contention with
other traffic on the medium. Frame transmission may be initiated after the interframe delay, regardless of the
presence of receive activity. In full duplex mode, the MAC sublayer does not perform either carrier exten-
sion or frame bursting.

The Physical Layer performs the task of generating the signals on the medium that represent the bits of the
frame. Simultaneously, it monitors the medium and generates the collision detect signal, which in the con-
tention-free case under discussion, remains off for the duration of the frame. A functional description of the
Physical Layer is given in Clause 7 Clause 7 and beyond.

When transmission has completed without contentioncompleted, the CSMA/CD MAC sublayer so informs
the MAC client and awaits the next request for frame transmission.

4.0.1.1.2 Reception without contention

4A.1.2.2 Reception

At each receiving station, the arrival of a frame is first detected by the Physical Layer, which responds by
synchronizing with the incoming preamble, and by turning on the receiveDataValid signal. As the encoded
bits arrive from the medium, they are decoded and translated back into binary data. The Physical Layer
passes subsequent bits up to the MAC sublayer, where the leading bits are discarded, up to and including the
end of the preamble and Start Frame Delimiter.

Meanwhile, the Receive Media Access Management component of the MAC sublayer, having observed
receiveDataValid, has been waiting for the incoming bits to be delivered. Receive Media Access Manage-
ment collects bits from the Physical Layer entity as long as the receiveDataValid signal remains on. When
the receiveDataValid signal is removed, the frame is truncated to an octet boundary, if necessary, and passed
to Receive Data Decapsulation for processing.

Receive Data Decapsulation checks the frame’s Destination Address field to decide whether the frame
should be received by this station. If so, it passes the Destination Address (DA), the Source Address (SA),
the Length/Type Type, the Data Data, and (optionally) the Frame Check Sequence (FCS) fields to the MAC
client, along with an appropriate status code, as defined in 4.3.24A.3.2. It also checks for invalid MAC
frames by inspecting the frame check sequence to detect any damage to the frame enroute, and by checking
for proper octet-boundary alignment of the end of the frame. Frames with a valid FCS may also be checked
for proper octet-boundary alignment.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
5 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

In half duplex mode, at an operating speed of 1000 Mb/s, frames may be extended by the transmitting station
under the conditions described in 4.2.3.4. The extension is discarded by the MAC sublayer of the receiving
station, as defined in the procedural model in 4.2.9.

4.0.1.2 Access interference and recovery

In half duplex mode, if multiple stations attempt to transmit at the same time, it is possible for them to inter-
fere with each other’s transmissions, in spite of their attempts to avoid this by deferring. When transmissions
from two stations overlap, the resulting contention is called a collision. Collisions occur only in half duplex
mode, where a collision indicates that there is more than one station attempting to use the shared physical
medium. In full duplex mode, two stations may transmit to each other simultaneously without causing inter-
ference. The Physical Layer may generate a collision indication, but this is ignored by the full duplex MAC.

A given station can experience a collision during the initial part of its transmission (the collision window)
before its transmitted signal has had time to propagate to all stations on the CSMA/CD medium. Once the
collision window has passed, a transmitting station is said to have acquired the medium; subsequent colli-
sions are avoided since all other (properly functioning) stations can be assumed to have noticed the signal
and to be deferring to it. The time to acquire the medium is thus based on the round-trip propagation time of
the Physical Layer whose elements include the PLS, PMA, and physical medium.

In the event of a collision, the transmitting station’s Physical Layer initially notices the interference on the
medium and then turns on the collision detect signal. In half duplex mode, this is noticed in turn by the
Transmit Media Access Management component of the MAC sublayer, and collision handling begins. First,
Transmit Media Access Management enforces the collision by transmitting a bit sequence called jam. In
4A.4, implementations that use this enforcement procedure are provided. This ensures that the duration of
the collision is sufficient to be noticed by the other transmitting station(s) involved in the collision. After the
jam is sent, Transmit Media Access Management terminates the transmission and schedules another trans-
mission attempt after a randomly selected time interval. Retransmission is attempted again in the face of
repeated collisions. Since repeated collisions indicate a busy medium, however, Transmit Media Access
Management attempts to adjust to the medium load by backing off (voluntarily delaying its own retransmis-
sions to reduce its load on the medium). This is accomplished by expanding the interval from which the ran-
dom retransmission time is selected on each successive transmit attempt. Eventually, either the transmission
succeeds, or the attempt is abandoned on the assumption that the medium has failed or has become over-
loaded.

In full duplex mode, a station ignores any collision detect signal generated by the Physical Layer. Transmit
Media Access Management in a full duplex station will always be able to transmit its frames without conten-
tion, so there is never any need to jam or reschedule transmissions.

At the receiving end, the bits resulting from a collision are received and decoded by the PLS just as are the
bits of a valid frame. Fragmentary frames received during collisions are distinguished from valid transmis-
sions by the MAC sublayer’s Receive Media Access Management component.

4A.1.3 Relationships to the MAC client and Physical Layersphysical layers

The CSMA/CD MAC sublayer provides services to the MAC client required for the transmission and recep-
tion of frames. Access to these services is specified in 4A.3. The CSMA/CD MAC sublayer makes a best
effort to acquire the medium and transfer a serial stream of bits to the Physical Layer. Although certain
errors are reported to the client, error recovery is not provided by MAC. Error recovery may be provided by
the MAC client or higher (sub)layers.

4A.1.4 CSMA/CD access Access method functional capabilities

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The following summary of the functional capabilities of the CSMA/CD MAC sublayer is intended as a
quick reference guide to the capabilities of the standard, as shown in Figure 4–1Figure 4A–1:

a) For Frame Transmission
1) Accepts data from the MAC client and constructs a frame.
2) Presents a bit-serial data stream to the Physical Layer for transmission on the medium.
NOTE—Assumes data passed from the client sublayer are octet multiples.

b) For Frame Reception
1) Receives a bit-serial data stream from the Physical Layer.
2) Presents to the MAC client sublayer frames that are either broadcast frames or directly

addressed to the local station.
3) Discards or passes to Network Management all frames not addressed to the receiving station.

c) In half duplex mode, defers Defers transmission of a bit-serial stream whenever the physical
medium layer is busy.

d) Appends proper FCS value to outgoing frames and verifies full octet boundary alignment.
e) Checks incoming frames for transmission errors by way of FCS and verifies octet boundary alignment
f) Delays transmission of frame bit stream for specified interframe gap period.
g) In half duplex mode, halts transmission when collision is detected.
h) In half duplex mode, schedules retransmission after a collision until a specified retry limit is

reached.
i) In half duplex mode, enforces collision to ensure propagation throughout network by sending jam

message.
j) Discards received transmissions that are less than a minimum length.

TRANSMIT
DATA ENCAPSULATION

RECEIVE
DATA DECAPSULATION

TRANSMIT MEDIA
ACCESS MANAGEMENT

RECEIVE MEDIA
ACCESS MANAGEMENT

TRANSMIT
DATA ENCODING

RECEIVE
DATA DECODING

PHYSICAL LAYER SIGNALING

MAC CLIENT SUBLAYER

a1 b2 b3

a2 c d f g h i k m b1 e j l n

ACCESS TO PHYSICAL INTERFACE

ACCESS TO MAC CLIENT

Figure 4–1—CSMA/CD Media Access Control functions

NOTE—a1, b2, etc., refer to functions listed in 4A.1.4.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
7 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

k) Appends preamble, Start Frame Delimiter, DA, SA, Length/Type field, and FCS to all frames, and
inserts PAD field for frames whose data length is less than a minimum value.

l) Removes preamble, Start Frame Delimiter, DA, SA, Length/Type field, FCS, and PAD field (if nec-
essary) from received frames.

m) Appends extension bits to the first (or only) frame of a burst if it is less than slotTime bits in length
when in half duplex mode at an operating speed of 1000 Mb/s.

n) Strips extension bits from received frames when in half duplex mode at an operating speed of 1000
Mb/s.

4A.2 CSMA/CD Media Access Control access control (MAC) method: Precise precise
specification

4A.2.1 Introduction

A precise algorithmic definition is given in this subclause, providing a procedural model for the CSMA/CD
MAC process with a program in the computer language Pascal. See references [B11] and [B34] for resource
material. Note whenever there is any apparent ambiguity concerning the definition of some aspect of the
CSMA/CD MAC method, it is the Pascal procedural specification in 4A.2.7 through 4A.2.10 which that
should be consulted for the definitive statement. Subclauses 4A.2.24A.2.2 through 4A.2.6 provide, in prose,
a description of the access mechanism with the formal terminology to be used in the remaining subclauses.

4A.2.2 Overview of the procedural model

TRANSMIT
DATA ENCAPSULATION

RECEIVE
DATA DECAPSULATION

TRANSMIT MEDIA
ACCESS MANAGEMENT

RECEIVE MEDIA
ACCESS MANAGEMENT

TRANSMIT
DATA ENCODING

RECEIVE
DATA DECODING

PHYSICAL LAYER SIGNALING

MAC CLIENT SUBLAYER

a1 d h b2 b3 e g i

a2 c f b1

ACCESS TO PHYSICAL INTERFACE

ACCESS TO MAC CLIENT

Figure 4A–1—Media access control functions

NOTE—a1, b2, etc., refer to functions listed in 4A.1.4.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The functions of the CSMA/CD MAC method are presented below, modeled as a program written in the
computer language Pascal. This procedural model is intended as the primary specification of the functions to
be provided in any CSMA/CD MAC sublayer implementation. It is important to distinguish, however,
between the model and a real implementation. The model is optimized for simplicity and clarity of presenta-
tion, while any realistic implementation shall place heavier emphasis on such constraints as efficiency and
suitability to a particular implementation technology or computer architecture. In this context, several
important properties of the procedural model shall be considered.

4A.2.2.1 Ground rules for the procedural model
a) First, it shall be emphasized that the description of the MAC sublayer in a computer language is in

no way intended to imply that procedures shall be implemented as a program executed by a com-
puter. The implementation may consist of any appropriate technology including hardware, firmware,
software, or any combination.

b) Similarly, it shall be emphasized that it is the behavior of any MAC sublayer implementations that
shall match the standard, not their internal structure. The internal details of the procedural model are
useful only to the extent that they help specify that behavior clearly and precisely.

c) The handling of incoming and outgoing frames is rather stylized in the procedural model, in the
sense that frames are handled as single entities by most of the MAC sublayer and are only serialized
for presentation to the Physical Layer. In reality, many implementations will instead handle frames
serially on a bit, octet or word basis. This approach has not been reflected in the procedural model,
since this only complicates the description of the functions without changing them in any way.

d) The model consists of algorithms designed to be executed by a number of concurrent processes;
these algorithms collectively implement the CSMA/CD MAC procedure. The timing dependencies
introduced by the need for concurrent activity are resolved in two ways:
1) Processes Versus External Events. It is assumed that the algorithms are executed “very fast”

relative to external events, in the sense that a process never falls behind in its work and fails to
respond to an external event in a timely manner. For example, when a frame is to be received, it
is assumed that the Media Access procedure ReceiveFrame is always called well before the
frame in question has started to arrive.

2) Processes Versus Processes. Among processes, no assumptions are made about relative speeds
of execution. This means that each interaction between two processes shall be structured to
work correctly independent of their respective speeds. Note, however, that the timing of inter-
actions among processes is often, in part, an indirect reflection of the timing of external events,
in which case appropriate timing assumptions may still be made.

It is intended that the concurrency in the model reflect the parallelism intrinsic to the task of implementing the
MAC client and MAC procedures, although the actual parallel structure of the implementations is likely to vary.

4A.2.2.2 Use of Pascal in the procedural model

Several observations need to be made regarding the method with which Pascal is used for the model. Some
of these observations are as follows:

a) The following limitations of the language have been circumvented to simplify the specification:
1) The elements of the program (variables and procedures, for example) are presented in logical

groupings, in top-down order. Certain Pascal ordering restrictions have thus been circumvented
to improve readability.

2) The process and cycle constructs of Concurrent Pascal, a Pascal derivative, have been intro-
duced to indicate the sites of autonomous concurrent activity. As used here, a process is simply
a parameterless procedure that begins execution at “the beginning of time” rather than being
invoked by a procedure call. A cycle statement represents the main body of a process and is
executed repeatedly forever.

3) The lack of variable array bounds in the language has been circumvented by treating frames as
if they are always of a single fixed size (which is never actually specified). The size of a frame

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
9 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

depends on the size of its data field, hence the value of the “pseudo-constant” frameSize should
be thought of as varying in the long term, even though it is fixed for any given frame.

4) The use of a variant record to represent a frame (as fields and as bits) follows the spirit but not
the letter of the Pascal Report, since it allows the underlying representation to be viewed as two
different data types.

b) The model makes no use of any explicit interprocess synchronization primitives. Instead, all
interprocess interaction is done by way of carefully stylized manipulation of shared variables. For
example, some variables are set by only one process and inspected by another process in such a
manner that the net result is independent of their execution speeds. While such techniques are not
generally suitable for the construction of large concurrent programs, they simplify the model and
more nearly resemble the methods appropriate to the most likely implementation technologies
(microcode, hardware state machines, etc.)

4A.2.2.3 Organization of the procedural model

The procedural model used here is based on seven five cooperating concurrent processes. The Frame Trans-
mitter process and the Frame Receiver process are provided by the clients of the MAC sublayer (which may
include the LLC sublayer) and make use of the interface operations provided by the MAC sublayer. The
other five three processes are defined to reside in the MAC sublayer. The seven five processes are as fol-
lows:

a) Frame Transmitter process
b) Frame Receiver process
c) Bit Transmitter process
d) Bit Receiver process
e) Deference process
f) BurstTimer process
g) SetExtending process

This organization of the model is illustrated in Figure 4–2Figure 4A–2 and reflects the fact that the communi-
cation of entire frames is initiated by the client of the MAC sublayer, while the timing of collision backoff and
of individual bit transfers is based on interactions between the MAC sublayer and the Physical-Layer-depen-
dent bit time. .

Figure 4–2 depicts the static structure of the procedural model, showing how the various processes and pro-
cedures interact by invoking each other. Figures 4–3aFigure 4A–3a, 4–3b, 4A–3cFigure 4A–3b, and
4–4bFigure 4A–3c summarize the dynamic behavior of the model during transmission and reception, focus-
ing on the steps that shall be performed, rather than the procedural structure that performs them. The usage
of the shared state variables is not depicted in the figures, but is described in the comments and prose in the
following subclauses. .

4A.2.2.4 Layer management extensions to procedural model

In order to incorporate network management functions, this Procedural Model has been expanded beyond
that provided in ISO/IEC 8802-3: 1990. Network management functions have been incorporated in two
ways. First, 4A.2.7–4A.2.10, 4A.3.2, Figure 4–3aFigure 4A–3a, and Figure 4–3bFigure 4A–3b have been
modified and expanded to provide management services. Second, Layer Management procedures have been
added as 5.2.4. Note that Pascal variables are shared between Clauses 4Annex 4A and Clause 5. Within the
Pascal descriptions provided in Clause 4, a “‡” in the left margin indicates a line that has been added to sup-
port management services. These lines are only required if Layer Management is being implemented. These
changes do not affect any aspect of the MAC behavior as observed at the LLC-MAC and MAC-PLS inter-
faces of ISO/IEC 8802-3: 1990.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The Pascal procedural specification shall be consulted for the definitive statement when there is any appar-
ent ambiguity concerning the definition of some aspect of the CSMA/CD MAC access method.

The Layer Management facilities provided by the CSMA/CD MAC and Physical Layer management
definitions provide the ability to manipulate management counters and initiate actions within the layers. The
managed objects within this standard are defined as sets of attributes, actions, notifications, and behaviors in
accordance with IEEE Std 802.1F-1993, and ISO/IEC International Standards for network management.

*BurstTimer

PHYSICAL LAYER

MEDIA ACCESS SUBLAYER

FrameTransmitter FrameReceiver

TransmitFrame

TransmitDataEncap ReceiveDataDecap

ReceiveFrame

CRC32ComputePad RemovePadLayerMgmt

TransmitLinkMgmt ReceiveLinkMgmt

StartTransmit

StartReceive

BitReceiverDeference

PhysicalSignalDecapPhysicalSignalEncap

BitTransmitter

NextBit

TransmitBit ReceiveBitWait

TRANSMIT RECEIVE

MEDIUM
MANAGEMENT

FRAMING

† Not applicable to full duplex operation.

†WatchForCollision †BackOff

†Random

†StartJam

*SetExtending

* Applicable only to half duplex operation at 1000 Mb/s.

*InterFrameSignal

MAC CLIENT

Figure 4–2—Relationship among CSMA/CD procedures

RecognizeAddress

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
11 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

TransmitFrame

Transmit
ENABLE?

assemble frame

burst
continuation?

deferring on?

start transmission

halfDuplex
and

collisionDetect?

transmission
done?

send jam

increment attempts

too many
attempts?

compute backoff

wait backoff time

Done:
transmitOK

Done:
excessiveCollisionError

no

yes

yes

no

no

no

yes

yes

yes

no

‡

no

yes

late

‡ For Layer Management

Done:
transmitDisabled

‡

yes

no

collision and >
100 Mb/s?

*Applicable only to half duplex operation at > 1000 Mb/s

*

Done:
lateCollisionErrorStatus

a) TransmitFrame

Figure 4–3a—Control flow summary

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4A.2.3 Frame transmission model

Frame transmission includes data encapsulation and Media Access management aspects:

a) Transmit Data Encapsulation includes the assembly of the outgoing frame (from the values provided
by the MAC client) and frame check sequence generation.

b) Transmit Media Access Management includes carrier deference, interframe spacing, collision detec-
tion spacing and enforcement, collision backoff and retransmission, carrier extension and frame
bursting. bit transmission.

4A.2.3.1 Transmit data encapsulation

PHYSICAL LAYER

MEDIA ACCESS SUBLAYER

FrameTransmitter FrameReceiver

TransmitFrame

TransmitDataEncap ReceiveDataDecap

ReceiveFrame

ComputePad RemovePadLayerMgmt

TransmitLinkMgmt ReceiveLinkMgmt

StartTransmit

StartReceive

BitReceiverDeference

PhysicalSignalDecap

BitTransmitter

TransmitBit ReceiveBitWait

TRANSMIT RECEIVE

MEDIUM
MANAGEMENT

FRAMING

MAC CLIENT

Figure 4A–2—Relationship among MAC procedures

RecognizeAddress
CRC32 CRC32

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
13 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ReceiveFrame

Receive
ENABLE?

start receiving

done
receiving?

disassemble frame

extra bits?

Done:
receiveOK

no

yes

yes

no

‡

no

yes

‡ For Layer Management

Done:
receiveDisabled

‡

frame

(collision)
too small?

recognize
address?

frame
too long?

valid

sequence?
frame check

valid

field?
length/type

Done:
lengthError

Done:
frameCheckError

Done:
alignmentError

Done:
frameTooLong

‡

‡

yes

yes

yes

yesyes

no

nono

no

no

b) ReceiveFrame

Figure 4–3b—Control flow summary

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The fields of the CSMA/CD MAC frame are set to the values provided by the MAC client as arguments to
the TransmitFrame operation (see 4.34A.3) with the following possible exceptions: the padding field, the
extension field, field and the frame check sequence. The padding field is necessary to enforce the minimum
frame size. The extension field is necessary to enforce the minimum carrier event duration on the medium in
half duplex mode at an operating speed of 1000 Mb/s. The frame check sequence field may be (optionally)
provided as an argument to the MAC sublayer. It is optional for a MAC to support the provision of the frame
check sequence in such an argument. If this field is provided by the MAC client, the padding field shall also
be provided by the MAC client, if necessary. If this field is not provided by the MAC client, or if the MAC
does not support the provision of the frame check sequence as an external argument, it is set to the CRC
value generated by the MAC sublayer, after appending the padding field, if necessary.

4A.2.3.2 Transmit media access management

4A.2.3.2.1 Deference

When a frame is submitted by the MAC client for transmission, the transmission is initiated as soon as pos-
sible, but in conformance with the rules of deference stated below. The rules of deference differ between half
duplex and full duplex modesfollowing rules.

a) Half duplex mode

TransmitFrame

Transmit
ENABLE?

assemble frame

deferring on?

start transmission

transmission
done?

Done:
transmitOK

no

yes

yes

no

no

yes

Done:
transmitDisabled

a) TransmitFrame

Figure 4A–3a—Control flow summary

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
15 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ReceiveFrame

Receive
ENABLE?

start receiving

done
receiving?

disassemble frame

extra bits?

Done:
receiveOK

no

yes

yes

no

no

yes

Done:
receiveDisabled

frame
too small?

recognize
address?

frame
too long?

valid

sequence?
frame check

valid

field?
length/type

Done:
lengthError

Done:
frameCheckError

Done:
alignmentError

Done:
frameTooLong

yes

yes

yes

yesyes

no

nono

no

no

b) ReceiveFrame

Figure 4A–3b—Control flow summary

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Even when it has nothing to transmitThe MAC sublayer monitors the transmitting variable, which indicates
the CSMA/CD MAC sublayer monitors is transmitting data to the physical medium for traffic by watching
layer, as well as the carrierSense signal provided by the PLS, which indicates the physical layer is not ready
for the next frame. Whenever the medium When either transmitting or carrierSense is busytrue, the CSMA/
CD MAC defers to the passing frame by delaying delays any pending transmission of its owntransmission.

no

yes

yes

no transmission
started?

transmit a bit

end of
frame?

transmission done

BitTransmitter process

yes

no receiving
started?

receive a bit

receiving done

BitReceiver process

fill interframeyes

no receiveDataValid
off or frameFinished

on?

Figure 4A–3c—Control flow

deferring on

transmitting or

deferring off

wait
interframe spacing

yes

no

Deference process

carrierSense?

transmitting or

no

yes

carrierSense?

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
17 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

no

yes

yes

no transmission
started?

transmit a bit

end of
frame?

transmission done

BitTransmitter process

yes

yes

no

no receiving
started?

receive a bit

receiving done

BitReceiver process

bursting on?

fill interframe

yes

no
*

*

bursting off

no

yes

*

*

of bits
≥ slotTime?

extending off

errors in
extension?

extensionOK off

yes

yes

no

no

extending off?

receiveSucceeding
 off

yes

no

*Applicable only to half duplex operation at > 1000 Mb/s

*

*

*

*

*

*

receiveDataValid
off or frameFinished

on?

frameWaiting
and bursting on?

a) MAC sublayer

Figure 4–4a—Control flow

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

extending on

yes

yes

no

*SetExtending process

halfDuplex
and

> 100 Mb/s?

no

bursting on?

clear burstCounter

wait one Bit Time

increment
burstCounter

bursting on and
burstCounter <

burstLimit?

no

no

yes

yes

*BurstTimer process

*Applicable only to half duplex operation at > 1000 Mb/s

bursting off

deferring on

channel busy?

no

no

deferring off

wait

channel free?

interframe spacing

frameWaiting?

yes

yes

yes

no

Deference process

b) MAC sublayer

Figure 4–4b—Control flow

receiveDataValid
on?

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
19 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

After the last bit of the passing frame (that is, when carrierSense changes from true to When both are false),
the CSMA/CD MAC continues to defer for a proper interFrameSpacing (see 4A.2.3.2.24A.2.3.2.2)..

If, at the end of the interFrameSpacing, a frame is waiting to be transmitted, transmission is initiated inde-
pendent of the value of carrierSenseinitiated. When transmission has completed (or immediately, if there
was nothing to transmit) the CSMA/CD MAC sublayer resumes its original monitoring of transmitting and
carrierSense.

NOTE—It is possible for the PLS carrier sense indication to fail to be asserted briefly during a collision on the
media. If the Deference process simply times the interframe gap based on this indication it is possible for a
short interframe gap to be generated, leading to a potential reception failure of a subsequent frame. To enhance
system robustness the following optional measures, as specified in 4A.2.8, are recommended when
interFrameSpacingPart1 is other than zero:

Start the timing of the interFrameSpacing as soon as transmitting and carrierSense are both false.
Reset the interFrameSpacing timer if carrierSense becomes true during the first 2/3 of the inter-
FrameSpacing timing interval. During the final 1/3 of the interval, the timer shall not be reset to
ensure fair access to the medium. An initial period shorter than 2/3 of the interval is permissible
including zero.

b) Full duplex mode

In full duplex mode, the CSMA/CD MAC does not defer pending transmissions based on the carri-
erSense signal from the PLS. Instead, it uses the internal variable transmitting to maintain proper
MAC state while the transmission is in progress. After the last bit of a transmitted frame, (that is,
when transmitting changes from true to false), the MAC continues to defer for a proper inter-
FrameSpacing (see 4A.2.3.2.2).

4A.2.3.2.2 Interframe spacing

As defined in 4A.2.3.2.1, the rules for deferring to passing frames ensure a minimum interframe spacing of
interFrameSpacing bit times. This is intended to provide interframe recovery time for other CSMA/CD sub-
layers and for to aid in frame delineation on the physical medium.

Note that interFrameSpacing is the minimum value of the interframe spacing. If necessary for implementa-
tion reasons, a transmitting sublayer may use a larger value with a resulting decrease in its throughput. The
larger value is determined by the parameters of the implementation, see 4A.4.

A larger value for interframe spacing is used for dynamically adapting the nominal data rate of the MAC
sublayer to SONET/SDH data rates (with packet granularity) for WAN-compatible applications of this stan-
dard. While in this optional mode of operation, the MAC sublayer counts the number of bits sent during a
frame’s transmission. After the frame’s transmission has been completed, the MAC sublayer extends the
minimum interframe spacing by a number of bits that is proportional to the length of the previously transmit-
ted frame. For more details, see 4.2.7 and 4.2.8.

4.0.1.2.1 Collision handling (half duplex mode only)

Once a CSMA/CD sublayer has finished deferring and has started transmission, it is still possible for it to
experience contention for the medium. Collisions can occur until acquisition of the network has been
accomplished through the deference of all other stations’ CSMA/CD sublayers.

The dynamics of collision handling are largely determined by a single parameter called the slot time. This
single parameter describes three important aspects of collision handling:

a) It is an upper bound on the acquisition time of the medium.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

b) It is an upper bound on the length of a frame fragment generated by a collision.
c) It is the scheduling quantum for retransmission.

To fulfill all three functions, the slot time shall be larger than the sum of the Physical Layer round-trip
propagation time and the Media Access Layer maximum jam time. The slot time is determined by the
parameters of the implementation, see 4A.4.

4.0.1.2.2 Collision detection and enforcement (half duplex mode only)

Collisions are detected by monitoring the collisionDetect signal provided by the Physical Layer. When a col-
lision is detected during a frame transmission, the transmission is not terminated immediately. Instead, the
transmission continues until additional bits specified by jamSize have been transmitted (counting from the
time collisionDetect went on). This collision enforcement or jam guarantees that the duration of the collision
is sufficient to ensure its detection by all transmitting stations on the network. The content of the jam is
unspecified; it may be any fixed or variable pattern convenient to the Media Access implementation; how-
ever, the implementation shall not be intentionally designed to be the 32-bit CRC value corresponding to the
(partial) frame transmitted prior to the jam.

4.0.1.2.3 Collision backoff and retransmission (half duplex mode only)

When a transmission attempt has terminated due to a collision, it is retried by the transmitting CSMA/CD
sublayer until either it is successful or a maximum number of attempts (attemptLimit) have been made and
all have terminated due to collisions. Note that all attempts to transmit a given frame are completed before
any subsequent outgoing frames are transmitted. The scheduling of the retransmissions is determined by a
controlled randomization process called “truncated binary exponential backoff.” At the end of enforcing a
collision (jamming), the CSMA/CD sublayer delays before attempting to retransmit the frame. The delay is
an integer multiple of slotTime. The number of slot times to delay before the nth retransmission attempt is
chosen as a uniformly distributed random integer r in the range:

0 ≤ r < 2k

where

k = min (n, 10)

If all attemptLimit attempts fail, this event is reported as an error. Algorithms used to generate the integer r
should be designed to minimize the correlation between the numbers generated by any two stations at any
given time.

Note that the values given above define the most aggressive behavior that a station may exhibit in attempting
to retransmit after a collision. In the course of implementing the retransmission scheduling procedure, a
station may introduce extra delays that will degrade its own throughput, but in no case may a station’s
retransmission scheduling result in a lower average delay between retransmission attempts than the proce-
dure defined above.

4.0.1.2.4 Full duplex transmission

In full duplex mode, there is never contention for a shared physical medium. The Physical Layer may indi-
cate to the MAC that there are simultaneous transmissions by both stations, but since these transmissions do
not interfere with each other, a MAC operating in full duplex mode must not react to such Physical Layer
indications. Full duplex stations do not defer to received traffic, nor abort transmission, jam, backoff, and
reschedule transmissions as part of Transmit Media Access Management. Transmissions may be initiated
whenever the station has a frame queued, subject only to the interframe spacing required to allow recovery
for other sublayers and for the physical medium.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
21 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4.0.1.2.5 Frame bursting (half duplex mode only)

At an operating speed of 1000 Mb/s, an implementation may optionally transmit a series of frames without
relinquishing control of the transmission medium. This mode of operation is referred to as burst mode. Once
a frame has been successfully transmitted, the transmitting station can begin transmission of another frame
without contending for the medium because all of the other stations on the network will continue to defer to
its transmission, provided that it does not allow the medium to assume an idle condition between frames.
The transmitting station fills the interframe spacing interval with extension bits, which are readily
distinguished from data bits at the receiving stations, and which maintain the detection of carrier in the
receiving stations. The transmitting station is allowed to initiate frame transmission until a specified limit,
referred to as burstLimit, is reached. The value of burstLimit is specified in 4A.4.2. Figure 4–5 shows an
example of transmission with frame bursting.

The first frame of a burst will be extended, if necessary, as described in 4.0.1.3. Subsequent frames within a
burst do not require extension. In a properly configured network, and in the absence of errors, collisions
cannot occur during a burst at any time after the first frame of a burst (including any extension) has been
transmitted. Therefore, the MAC will treat any collision that occurs after the first frame of a burst, or that
occurs after the slotTime has been reached in the first frame of a burst, as a late collision.

4A.2.3.2.3 Transmission

Transmissions may be initiated whenever the station has a frame queued, subject only to the physical layer
contention and interframe spacing required to allow recovery for the physical medium. In certain implemen-
tations, interframe spacing is accomplished outside this layer. These implementations are allowed to always
initiate transmissions immediately, subject only to conditions enforced outside this layer.

4A.2.3.2.4 Minimum frame size

The CSMA/CD Media Access mechanism MAC requires that a minimum frame length of minFrameSize
bits be transmitted. If frameSize is less than minFrameSize, then the CSMA/CD MAC sublayer shall append
extra bits in units of octets (pad), after the end of the MAC client data field but prior to calculating, and
appending, the FCS (if not provided by the MAC client). The number of extra bits shall be sufficient to
ensure that the frame, from the DA field through the FCS field inclusive, is at least minFrameSize bits. If the
FCS is (optionally) provided by the MAC client, the pad shall also be provided by the MAC client. The con-
tent of the pad is unspecified.

4.0.1.3 Carrier extension (half duplex mode only)

At an operating speed of 1000 Mb/s, the slotTime employed at slower speeds is inadequate to accommodate
network topologies of the desired physical extent. Carrier Extension provides a means by which the
slotTime can be increased to a sufficient value for the desired topologies, without increasing the
minFrameSize parameter, as this would have deleterious effects. Nondata bits, referred to as extension bits,
are appended to frames that are less than slotTime bits in length so that the resulting transmission is at least
one slotTime in duration. Carrier Extension can be performed only if the underlying physical layer is

burstLimit

Duration of Carrier Event

MAC Frame w/ Extension InterFrame MAC Frame InterFrame MAC Frame

Figure 4–5—Frame bursting

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

capable of sending and receiving symbols that are readily distinguished from data symbols, as is the case in
most physical layers that use a block encoding/decoding scheme. The maximum length of the extension is
equal to the quantity (slotTime – minFrameSize). Figure 4–6 depicts a frame with carrier extension.

The MAC continues to monitor the medium for collisions while it is transmitting extension bits, and it will
treat any collision that occurs after the threshold (slotTime) as a late collision.

4A.2.4 Frame reception model

CSMA/CD The MAC sublayer frame reception includes both data decapsulation and Media Access manage-
ment aspects:

a) Receive Data Decapsulation comprises address recognition, frame check sequence validation, and
frame disassembly to pass the fields of the received frame to the MAC client.

b) Receive Media Access Management comprises recognition of collision fragments from incoming
frames and truncation of frames to octet boundaries.

4A.2.4.1 Receive data decapsulation

4A.2.4.1.1 Address recognition

The CSMA/CD MAC sublayer is capable of recognizing individual and group addresses.

a) Individual Addresses. The CSMA/CD MAC sublayer recognizes and accepts any frame whose DA
field contains the individual address of the station.

b) Group Addresses. The CSMA/CD MAC sublayer recognizes and accepts any frame whose DA field
contains the Broadcast address.

The CSMA/CD MAC sublayer is capable of activating some number of group addresses as specified by
higher layers. The CSMA/CD MAC sublayer recognizes and accepts any frame whose Destination Address
field contains an active group address. An active group address may be deactivated.

The MAC sublayer may also provide the capability of operating in the promiscuous receive mode. In this
mode of operation, the MAC sublayer recognizes and accepts all valid frames, regardless of their Destina-
tion Address field values.

4A.2.4.1.2 Frame check sequence validation

FCS validation is essentially identical to FCS generation. If the bits of the incoming frame (exclusive of the
FCS field itself) do not generate a CRC value identical to the one received, an error has occurred and the
frame is identified as invalid.

Figure 4–6—Frame with carrier extension

Preamble SFD DA SA Type/Length Data/PAD FCS Extension

minFrameSize
slotTime

FCS Coverage
late collision threshold (slotTime)

Duration of Carrier Event

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
23 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4A.2.4.1.3 Frame disassembly

Upon recognition of the Start Frame Delimiter at the end of the preamble sequence, the CSMA/CD MAC
sublayer accepts the frame. If there are no errors, the frame is disassembled and the fields are passed to the
MAC client by way of the output parameters of the ReceiveFrame operation.

4A.2.4.2 Receive media access management

4A.2.4.2.1 Framing

The CSMA/CD MAC sublayer recognizes the boundaries of an incoming frame by monitoring the receive-
DataValid signal provided by the Physical Layer. Two possible length errors can occur that indicate ill-
framed data: the frame may be too long, or its length may not be an integer number of octets.

a) Maximum Frame Size. The receiving CSMA/CD MAC sublayer is not required to enforce the frame
size limit, but it is allowed to truncate frames longer than maxUntaggedFrameSize octets and report
this event as an (implementation-dependent) error. A receiving CSMA/CD MAC sublayer that sup-
ports tagged MAC frames (see 3.5) may similarly truncate frames longer than (maxUntaggedFrame-
Size + qTagPrefixSize) octets in length, and report this event as an (implementation-dependent)
error.

b) Integer Number of Octets in Frame. Since the format of a valid frame specifies an integer number of
octets, only a collision or an error can produce a frame with a length that is not an integer multiple of
8 bits. Complete frames (that is, not rejected as collision fragments; see 4.0.1.3.1for being too small)
that do not contain an integer number of octets are truncated to the nearest octet boundary. If frame
check sequence validation detects an error in such a frame, the status code alignmentError is
reported.

When a burst of frames is received while operating in half duplex mode at an operating speed of 1000 Mb/s,
the individual frames within the burst are delimited by sequences of interframe fill symbols, which are
conveyed to the receiving MAC sublayer as extension bits. Once the collision filtering requirements for a
given frame, as described in 4.0.1.3.1, have been satisfied, the receipt of an extension bit can be used as an
indication that all of the data bits of the frame have been received.

4.0.1.3.1 Collision filtering

In the absence of a collision, the shortest valid transmission in half duplex mode must be at least one slot-
Time in length. Within a burst of frames, the first frame of a burst must be at least slotTime bits in length in
order to be accepted by the receiver, while subsequent frames within a burst must be at least minFrameSize
in length. Anything less is presumed to be a fragment resulting from a collision, and is discarded by the
receiver. In half duplex mode, occasional collisions are a normal part of the Media Access management pro-
cedure. The discarding of such a fragment by a MAC is not reported as an error.

The shortest valid transmission in full duplex mode must be at least minFrameSize in length. While
collisions do not occur in full duplex mode MACs, a full duplex MAC nevertheless discards received frames
containing less than minFrameSize bits. The discarding of such a frame by a MAC is not reported as an
error.

4A.2.5 Preamble generation

In a LAN implementation, most of the Physical Layer components are allowed to provide valid output some
number of bit times after being presented valid input signals. Thus it is necessary for a preamble to be sent
before the start of data, to allow the PLS circuitry to reach its steady state. Upon request by TransmitLink-
Mgmt to transmit the first bit of a new frame, PhysicalSignalEncap BitTransmitter shall first transmit the

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

preamble, a bit sequence used for physical medium stabilization and synchronization, followed by the Start
Frame Delimiter. If, while transmitting the preamble or Start Frame Delimiter, the collision detect variable
becomes true, any remaining preamble and Start Frame Delimiter bits shall be sent. The preamble pattern is:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

The bits are transmitted in order, from left to right. The nature of the pattern is such that, for Manchester
encoding, it appears as a periodic waveform on the medium that enables bit synchronization. It should be
noted that the preamble ends with a “0.”

4A.2.6 Start frame sequence

The receiveDataValid signal is the indication to the MAC that the frame reception process should begin.
Upon reception of the sequence 10101011 following the assertion of receiveDataValid, PhysicalSignalDe-
cap shall begin passing successive bits to ReceiveLinkMgmt for passing to the MAC client.

4A.2.7 Global declarations

This subclause provides detailed formal specifications for the CSMA/CD MAC sublayer. It is a specification
of generic features and parameters to be used in systems implementing this media access method. Subclause
4A.4 provides values for these sets of parameters for recommended implementations of this media access
mechanism.

4A.2.7.1 Common constants, types, and variables

The following declarations of constants, types and variables are used by the frame transmission and recep-
tion sections of each CSMA/CD MAC sublayer:

const
addressSize = 48; {In bits, in compliance with 3.2.3}
lengthOrTypeSize = 16; {In bits}
clientDataSize = ...; {In bits, size of MAC client data; see 4.2.2.24A.2.2.2, aa) 33)}
padSize = ...; {iIn In bits, = max (0, minFrameSize – (2 x addressSize + lengthOrTypeSize +

clientDataSize + crcSize))}
dataSize = ...; {In bits, = clientDataSize + padSize}
crcSize = 32; {In bits, 32-bit CRC}
frameSize = ...; {In bits, = 2 x addressSize + lengthOrTypeSize + dataSize + crcSize; see

4.2.2.24A.2.2.2, aa)}
minFrameSize = ... ; {In bits, implementation-dependent, see 4.44A.4}
maxUntaggedFrameSize = ... ; {iIn octets, implementation-dependent, see 4.44A.4}
qTagPrefixSize = 4; {In octets, length of QTag Prefix, see 3.5}
extend = ...; {Boolean, true if (slotTime – minFrameSize) > 0, false otherwise}
extensionBit = ...; {A nondata value which is used for carrier extension and interframe during bursts}
extensionErrorBit minTypeValue = ...1536; {A nondata Minimum value which is used to jam during

carrier extensionof the Length/Type field for Type interpretation}
minTypeValue = 1536; {Minimum value of the Length/Type field for Type interpretation}
maxValidFrame = maxUntaggedFrameSize – (2 x addressSize + lengthOrTypeSize + crcSize) / 8;

{In octets, the maximum length of the MAC client data field. This constant is
defined for editorial convenience, as a function of other constants}

preambleSize = 56; {In bits, see 4.2.54A.2.5}
sfdSize = 8; {In bits, start frame delimiter}

headerSize = 64; {In bits, sum of preambleSize and sfdSize}

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

type
Bit = (0, 1);
PhysicalBit Bit = (0, 1, extensionBit, extensionErrorBit);

{Bits transmitted to the Physical Layer can be either 0, 1, extensionBit or
extensionErrorBit. PhysicalBit = (0, 1); {Bits received from transmitted to

the Physical Layer can be either 0, 0 or 1. Bits received
from the Physical Layer can be either 0 or extensionBit.1}

AddressValue = array [1..addressSize] of Bit;
LengthOrTypeValue = array [1..lengthOrTypeSize] of Bit;
DataValue = array [1..dataSize] of Bit; {Contains the portion of the frame that starts with the first bit

following the Length/Type field and ends with the last bit
prior to the FCS field. For VLAN Tagged frames, this value
includes the Tag Control Information field and the original
MAC client Length/Type field. See 3.5}

CRCValue = array [1..crcSize] of Bit;
PreambleValue = array [1..preambleSize] of Bit;
SfdValue = array [1..sfdSize] of Bit;
ViewPoint = (fields, bits); {Two ways to view the contents of a frame}
HeaderViewPoint = (headerFields, headerBits);
Frame = record {Format of Media Access frame}

case view: ViewPoint of
fields: (

destinationField: AddressValue;
sourceField: AddressValue;
lengthOrTypeField: LengthOrTypeValue;
dataField: DataValue;
fcsField: CRCValue);

bits: (contents: array [1..frameSize] of Bit)
end; {Frame}

Header = record {Format of preamble and start frame delimiter}
case headerView: HeaderViewPoint of

headerFields: (
preamble: PreambleValue;
sfd: SfdValue);
headerContents: array [1..headerSize] of Bit)

headerBits: (headerContents: array [1..headerSize] of Bit)
end; {Defines header for MAC frame}

var
halfDuplex: Boolean; {Indicates the desired mode of operation. halfDuplex is a static variable; its value

shall only be changed by the invocation of the Initialize procedure}

4A.2.7.2 Transmit state variables

The following items are specific to frame transmission. (See also 4A.4.)

const
interFrameSpacing = ...; {In bit times, minimum gap between frames. Equal to interFrameGap,

see 4.4}
interFrameSpacingPart1 = ...; {In bit times, duration of the first portion of interFrameSpacing. In the

range of 0 to 2/3 of interFrameSpacing}
interFrameSpacingPart2 = ...; {In bit times, duration of the remainder of interFrameSpacing. Equal to

interFrameSpacing – interFrameSpacingPart1}
interFrameSize interFrameSpacing =; {in bitsIn bit times, length of interframe fill during a burst-

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
26 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

minimum gap between frames. Equal to interFrameGap
divided by the bit period}interFrameGap,

ifsStretchRatio = ...; {In bits, determines the number of bits in a frame that require one octet of
interFrameSpacing extension, when ifsStretchMode is enabled; implementation
dependent, see 4.4}

attemptLimit = ...; {Max number of times to attempt transmission}
backOffLimit = ...; {Limit on number of times to back off}
burstLimit= ...; {In bits, limit for initiation of frame transmission in Burst Mode,

implementation dependent, see 4.44A.4}
jamSize = ...; {In bits, the value depends upon medium and collision detect implementation}

var
outgoingFrame: Frame; {The frame to be transmitted}
outgoingHeader: Header;
currentTransmitBit, lastTransmitBit: 1..frameSize; {Positions of current and last outgoing bits in

outgoingFrame}
lastHeaderBit: 1..headerSize;
deferring: Boolean; {Implies any pending transmission must wait for the medium physical layer to

clear}be ready for
frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
attempts: 0..attemptLimit; {Number of transmission attempts on outgoingFrame}
newCollision: Boolean; {Indicates that a collision has occurred but has not yet been jammed}
transmitSucceeding: Boolean; {Running indicator of whether transmission is succeeding}
burstMode: Boolean; {Indicates the desired mode of operation, and enables the transmission of

multiple frames in a single carrier event. burstMode is a static variable; its
value shall only be changed by the invocation of the Initialize procedure}

bursting: Boolean; {In burstMode, the given station has acquired the medium and the burst timer has
not yet expired the next packet and for the interframe spacing}

burstStart: Boolean; {In burstMode, indicates that the first frame transmission is in progress}
extendError: Boolean; {Indicates a collision occurred while sending extension bits}
ifsStretchModedeferenceMode: Boolean; {Indicates the desired mode of operation, and enables the

lowering of waiting for the
average data rate of the MAC sublayer (with frame granularity), using
extension of the minimum interFrameSpacing. ifsStretchMode is a static
variable; its value shall only be changed by the invocation of the Initialize
procedure}

ifsStretchCount: 0..ifsStretchRatio; {In bits, a running counter that counts the number of bits during a
frame’s transmission that are to be considered for the minimum
interFrameSpacing extension, while operating in ifsStretchMode}

ifsStretchSize: 0..(((maxUntaggedFrameSize + qTagPrefixSize) x 8 + headerSize + interFrameSpacing
+ ifsStretchRatio – 1) div ifsStretchRatio);deferring variable before transmitting}
{In octets, a running counter that counts the integer number of octets that are to be
added to the minimum interFrameSpacing, while operating in ifsStretchMode}

4A.2.7.3 Receive state variables

The following items are specific to frame reception. (See also 4A.4.)

var
incomingFrame: Frame; {The frame being received}
receiving: Boolean; {Indicates that a frame reception is in progress}
excessBits: 0..7; {Count of excess trailing bits beyond octet boundary}
receiveSucceeding: Boolean; {Running indicator of whether reception is succeeding}
validLength: Boolean; {Indicator of whether received frame has a length error}
exceedsMaxLength: Boolean; {Indicator of whether received frame has a length longer than the

maximum permitted length}

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

extendingpassReceiveFCSMode: Boolean; {Indicates whether the current frame is subject to carrier ex-
tension}desired mode of operation, and enables passing of

extensionOK: Boolean; {Indicates whether any bit errors were found in the extension part of a frame,
which is not checked by the CRC}

passReceiveFCSMode: Boolean; {Indicates the desired mode of operation, and enables passing of
the frame check sequence field of all received frames from the
MAC sublayer to the MAC client. passReceiveFCSMode is a
static variable}

4A.2.7.4 Summary of interlayer interfaces
a) The interface to the MAC client, defined in 4.3.24A.3.2, is summarized below:

type
TransmitStatus = (transmitDisabled, transmitOK, excessiveCollisionError, lateCollisionErrorStatus);

{Result of TransmitFrame operation, the values excessiveCollisionError and
TransmitStatus = (transmitDisabled, transmitOK, excessiveCollisionError, lateCollisionErrorStatus);

{Result of TransmitFrame operation, reporting of lateCollisionErrorStatus islateCol-
lisionError are never generated by this MAC but maintained here as

TransmitStatus = (transmitDisabled, transmitOK, excessiveCollisionError, lateCollisionErrorStatus);
{Result artifacts of TransmitFrame operation, reporting of lateCollisionErrorStatus

isthe original CMSA/CD MAC}
optional for MACs operating at speeds at or below 100Mb/s}

ReceiveStatus = (receiveDisabled, receiveOK, frameTooLong, frameCheckError, lengthError,
alignmentError); {Result of ReceiveFrame operation}
alignmentError); {Result of ReceiveFrame operation}

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus; {Transmits one frame}

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus; {Receives one frame}

b) The interface to the Physical Layer, defined in 4.3.34A.3.3, is summarized in the following:

var
receiveDataValid: Boolean; {Indicates incoming bits}
carrierSense: Boolean; {Indicates that physical layer is not ready for the next packet and that

transmission should defer}
carrierSense: Boolean; {In half duplex mode, indicates that transmission should defer}
transmitting: Boolean; {Indicates outgoing bits}
collisionDetect: Boolean; {Indicates medium contention}
collisionDetect: Boolean; {Unused by this MAC but maintained as an artifact of the CSMA/CD MAC}

procedure TransmitBit (bitParam: PhysicalBit); {Transmits one bit}
function ReceiveBit: PhysicalBit; {Receives one bit}
procedure Wait (bitTimes: integer); {Waits for indicated number of bit times}

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4A.2.7.5 State variable initialization

The procedure Initialize must be run when the MAC sublayer begins operation, before any of the processes
begin execution. Initialize sets certain crucial shared state variables to their initial values. (All other global
variables are appropriately reinitialized before each use.) Initialize then waits for the medium to be idle, and
starts operation of the various processes.

NOTE—Care should be taken to ensure that the time from the completion of the Initialize process to when the first
packet transmission begins is at least an interFrameGap.

If Layer Management is implemented, the Initialize procedure shall only be called as the result of the initial-
izeMAC action (30.3.1.2.1).

procedure Initialize;
begin

deferring := false;
newCollision := false;
transmitting := false; {An interface to Physical Layer; see below}
receiving := false;
halfDuplex passReceiveFCSMode := ...; {True for half duplex operation, false for full duplex opera-

tion. For operation atwhen enabling the passing of the frame check sequence of all
speeds above 1000 Mb/s, halfDuplex shall always be false}

bursting := false;
burstMode := ...; { True for half duplex operation at an operating speed of 1000

Mb/s, when multiple frames’ transmission in a single carrier event received frames
from the MAC sublayer to the MAC client is desired and

supported, false otherwise} between invocations of the Initialize proce-
dure}

extending := extend and halfDuplex;
ifsStretchMode deferenceMode := ...; {True False for operating speeds above 1000 Mb/s when lower-

ing implementations that cannot rely on deference within the average data rateMAC to
of the MAC sublayer (with frame granularity) is desired and supported, false
provide an interframe gap, true otherwise}

ifsStretchCount := 0;
ifsStretchSize := 0;
passReceiveFCSMode := ...; {True when enabling the passing of the frame check sequence of all

received frames from the MAC sublayer to the MAC client is desired and
supported, false otherwise}

if halfDuplex then while carrierSense or receiveDataValid do nothing
else while carrierSense or receiveDataValid do nothing
{Start execution of all processes}

end; {Initialize}

4A.2.8 Frame transmission

The algorithms in this subclause define MAC sublayer frame transmission. The function TransmitFrame
implements the frame transmission operation provided to the MAC client:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue;

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus;

procedure TransmitDataEncap; {Nested procedure; see body below}
begin

if transmitEnabled then
begin

TransmitDataEncap;
TransmitFrame := TransmitLinkMgmt

end
else TransmitFrame := transmitDisabled

end; {TransmitFrame}

If transmission is enabled, TransmitFrame calls the internal procedure TransmitDataEncap to construct the
frame. Next, TransmitLinkMgmt is called to perform the actual transmission. The TransmitStatus returned
indicates the success or failure of the transmission attempt.

TransmitDataEncap builds the frame and places the 32-bit CRC in the frame check sequence field:

procedure TransmitDataEncap;
begin

with outgoingFrame do
begin {Assemble frame}

view := fields;
destinationField := destinationParam;
sourceField := sourceParam;
lengthOrTypeField := lengthOrTypeParam;
if fcsParamPresent then

begin
dataField := dataParam; {No need to generate pad if the FCS is passed from MAC client}
fcsField := fcsParamValue {Use the FCS passed from MAC client}

end
else

begin
dataField := ComputePad(dataParam);
fcsField := CRC32(outgoingFrame)

end;
view := bits

end {Assemble frame}
with outgoingHeader do

begin
headerView := headerFields;
preamble := ...; {* ‘1010...10,’ LSB to MSB*}
sfd := ...; {* ‘10101011,’ LSB to MSB*}
headerView := headerBits

end
end; {TransmitDataEncap}

If the MAC client chooses to generate the frame check sequence field for the frame, it passes this field to the
MAC sublayer via the fcsParamValue parameter. If the fcsParamPresent parameter is true, TransmitDataEn-
cap uses the fcsParamValue parameter as the frame check sequence field for the frame. Such a frame shall
not require any padding, since it is the responsibility of the MAC client to ensure that the frame meets the
minFrameSize constraint. If the fcsParamPresent parameter is false, the fcsParamValue parameter is unspec-

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ified.. TransmitDataEncap first calls the ComputePad function, followed by a call to the CRC32 function to
generate the padding (if necessary) and the frame check sequence field for the frame internally to the MAC
sublayer.

ComputePad appends an array of arbitrary bits to the MAC client data to pad the frame to the minimum
frame size:

begin
ComputePad := {Append an array of size padSize of arbitrary bits to the MAC client dataField}

end; {ComputePadParam}

function ComputePad(var dataParam: DataValue): DataValue;
begin

ComputePad := {Append an array of size padSize of arbitrary bits to the MAC client dataField}
end; {ComputePad}

TransmitLinkMgmt attempts to transmit the frame. In half duplex mode, it first defers to any passing traffic.
In half duplex mode, if a collision occurs, transmission is terminated properly and retransmission is sched-
uled following a suitable backoff interval:

TransmitLinkMgmt attempts to transmit the frame. When deferenceMode is true, it first defers to the physi-
cal layer if it is not ready for the next packet and to ensure proper interframe spacing. When deferenceMode
is false, it begins transmitting immediately:

function TransmitLinkMgmt: TransmitStatus;
begin

if deferenceMode then while deferring do {Defer to physical layer contention and IFS}
attempts := 0StartTransmit;
transmitSucceeding := false;while transmitting do nothing
LayerMgmtTransmitCounters; {Update transmit and transmit error counters in 5.2.4.2}
lateCollisionCount TransmitLinkMgmt := 0;transmitOK
deferred := falseend; {InitializeTransmitLinkMgmt}

Each time a frame transmission attempt is initiated, StartTransmit is called to alert the BitTransmitter pro-
cess that bit transmission should begin:

excessDefer := falseprocedure StartTransmit;
while (attempts < attemptLimit) and (not transmitSucceeding)

and (not extend or lateCollisionCount = 0) do
{No retransmission after late collision if operating at 1000 Mb/s}

begin {Loop}
if bursting then {This is a burst continuation}

frameWaiting := true {Start transmission without checking deference}
else {Non bursting case, or first frame of a burst}

begin
if attempts > 0 then BackOff;
frameWaiting currentTransmitBit := true1;
while deferring do {Defer to passing frame, if any1}

nothinglastTransmitBit := frameSize;
‡ if halfDuplex then deferred transmitting := true;

end;

1 The Deference process ensures that the reception of traffic does not cause deferring to be true when in full duplex mode. Deferring is
used in full duplex mode to enforce the minimum interpacket gap spacing.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

burstStart lastHeaderBit:= true;headerSize
if burstMode then bursting := true

end;
lateCollisionError := false;

end; {StartTransmit}

The Deference process runs asynchronously to continuously compute the proper value for the variable defer-
ring:

StartTransmitprocess Deference;
frameWaiting := false;
if halfDuplex then
begin

while transmitting do WatchForCollision;
if lateCollisionError then lateCollisionCount := lateCollisionCount + 1;
attempts := attempts + 1

end cycle {Half duplex modeMain loop}
while not transmitting and not carrierSense do nothing; {Wait for the start of transmission or

contention}
else while transmitting do nothing deferring := true; {Full duplex modeInhibit future transmis-

sions}
end; {Loop}

LayerMgmtTransmitCounters; {Update transmit and transmit error counters in 5.2.4.2}
if transmitSucceeding then

begin
while transmitting or carrierSense do nothing; {Wait for the end of transmission and contention}
Wait(interFrameSpacing); {Time out entire interframe gap}

if burstMode then burstStart deferring := false; false {CanDon’t be the first frame anymoreinhibit
transmission}

TransmitLinkMgmt := transmitOK
end

else if (extend and lateCollisionCount > 0) then TransmitLinkMgmt := lateCollisionErrorStatus;
else TransmitLinkMgmt := excessiveCollisionError

end; end {TransmitLinkMgmtMain loop}

Each time a frame transmission attempt is initiated, StartTransmit is called to alert the BitTransmitter pro-
cess that bit transmission should begin:

procedure StartTransmit;
begin

currentTransmitBit := 1;
lastTransmitBit := frameSize;
transmitSucceeding := true;
transmitting := true;
lastHeaderBit:= headerSize

end; {StartTransmitDeference}

In half duplex mode, TransmitLinkMgmt monitors the medium for contention by repeatedly calling Watch-
ForCollision, once frame transmission has been initiated:

procedure WatchForCollision;
begin

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

if transmitSucceeding and collisionDetect then
begin

if currentTransmitBit > (slotTime – headerSize) then lateCollisionError := true;
newCollision := true;
transmitSucceeding := false;
if burstMode then
begin

 bursting := false;
 if not burstStart then
 lateCollisionError := true {Every collision is late, unless it hits the first frame in a burst}

end
end

end; {WatchForCollision}

WatchForCollision, upon detecting a collision, updates newCollision to ensure proper jamming by the Bit-
Transmitter process. The current transmit bit number is checked to see if this is a late collision. If the colli-
sion occurs later than a collision window of slotTime bits into the packet, it is considered as evidence of a
late collision. The point at which the collision is received is determined by the network media propagation
time and the delay time through a station and, as such, is implementation-dependent (see 4.1.2.2). While
operating at speeds of 100 Mb/s or lower, an implementation may optionally elect to end retransmission
attempts after a late collision is detected. While operating at the speed of 1000 Mb/s, an implementation
shall end retransmission attempts after a late collision is detected.

After transmission of the jam has been completed, if TransmitLinkMgmt determines that another attempt
should be made, BackOff is called to schedule the next attempt to retransmit the frame.

function Random (low, high: integer): integer;
begin

Random := ...{Uniformly distributed random integer r, such that low ≤ r < high}
end; {Random}

BackOff performs the truncated binary exponential backoff computation and then waits for the selected mul-
tiple of the slot time:

var maxBackOff: 2..1024; {Working variable of BackOff}
procedure BackOff;
begin

if attempts = 1 then maxBackOff := 2
else if attempts ≤ backOffLimit then maxBackOff := maxBackOff x 2;
Wait(slotTime x Random(0, maxBackOff))

end; {BackOff}

BurstTimer is a process that does nothing unless the bursting variable is true. When bursting is true, Burst-
Timer increments burstCounter until the burstLimit limit is reached, whereupon BurstTimer assigns the
value false to bursting:

var burstCounter: integer;
begin

cycle
while not bursting do nothing; {wait for a burst}
burstCounter := 0;
while bursting and (burstCounter < burstLimit) do

begin

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 33

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Wait(1);
burstCounter := burstCounter + 1

end;
bursting := false

end {burstMode cycle}
end; {BurstTimer}

process BurstTimer;
begin

cycle
while not bursting do nothing; {Wait for a burst}
Wait(burstLimit);
bursting := false

end {burstMode cycle}
end; {BurstTimer}

The Deference process runs asynchronously to continuously compute the proper value for the variable defer-
ring. In the case of half duplex burst mode, deferring remains true throughout the entire burst. Interframe
spacing may be used to lower the average data rate of a MAC at operating speeds above 1000 Mb/s in the
full duplex mode, when it is necessary to adapt it to the data rate of a WAN-based physical layer. When
interframe stretching is enabled, deferring remains true throughout the entire extended interframe gap,
which includes the sum of interFrameSpacing and the interframe extension as determined by the BitTrans-
mitter:

The BitTransmitter process runs asynchronously, transmitting bits at a rate determined by the Physical
Layer’s TransmitBit operation:

process DeferenceBitTransmitter;
var realTimeCounter: integer; wasTransmitting: Boolean;

begin
if halfDuplex then cycle{Half duplex loop}

while not carrierSense do nothing; {Watch for carrier to appear}
deferring := true; {Delay start of new transmissions}
wasTransmitting := transmitting;
while carrierSense or transmitting do wasTransmitting := wasTransmitting or transmitting;
if wasTransmitting then Wait(interFrameSpacingPart1) {Time out first part of interframe gap}
else

begin
StartRealTimeDelay;cycle {Outer loop}
repeatif transmitting then
while carrierSense do StartRealTimeDelaybegin {Inner loop}
until not RealTimeDelay(interFrameSpacingPart1)while transmitting do
realTimeCounter := interFrameSpacingPart1;begin
repeat

WaitTransmitBit(1outgoingFrame[currentTransmitBit]);
realTimeCounter currentTransmitBit := realTimeCounter – currentTransmitBit + 1;

until transmitting := (realTimeCounter = 0currentTransmitBit ≤ lastTransmitBit)
end;

Wait(interFrameSpacingPart2); end {Time out second part of interframe gapInner loop}
deferring := false; Allow new transmissions to proceed}
while frameWaiting do nothing end {Allow waiting transmission, if anyOuter loop}

end end; {Half duplex loopBitTransmitter}
else cycle {Full duplex loop}

while not transmitting do nothing; {Wait for the start of a transmission}

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

deferring := true; {Inhibit future transmissions}
while transmitting do nothing; {Wait for the end of the current transmission}
Wait(interFrameSpacing + ifsStretchSize x 8); {Time out entire interframe gap and IFS extension}
if not frameWaiting then {Don’t roll over the remainder into the next frame}

4A.2.9 Frame reception

The algorithms in this subclause define the MAC sublayer frame reception.

The function ReceiveFrame implements the frame reception operation provided to the MAC client:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus;

function ReceiveDataDecap: ReceiveStatus; {Nested function; see body below}
begin

if receiveEnabled then
beginrepeat

Wait(8)ReceiveLinkMgmt;
ifsStretchCount ReceiveFrame := 0ReceiveDataDecap;

enduntil receiveSucceeding
deferring else ReceiveFrame := false {Don’t inhibit transmission}receiveDisabled

end end; {Full duplex loopReceiveFrame}
end; {Deference}

If the ifsStretchMode is enabled, the Deference process continues to enforce interframe spacing for an addi-
tional number of bit times, after the completion of timing the interFrameSpacing. The additional number of
bit times is reflected by the variable ifsStretchSize. If the variable ifsStretchCount is less than ifsStretchRa-
tio and the next frame is ready for transmission (variable frameWaiting is true), the Deference process
enforces interframe spacing only for the integer number of octets, as indicated by ifsStretchSize, and saves
ifsStretchCount for the next frame’s transmission. If the next frame is not ready for transmission (variable
frameWaiting is false), then the Deference process initializes the ifsStretchCount variable to zero.

begin
{reset the realtime timer and start it timing}

end; {StartRealTimeDelay}

If enabled, ReceiveFrame calls ReceiveLinkMgmt to receive the next valid frame, and then calls the internal
function ReceiveDataDecap to return the frame’s fields to the MAC client if the frame’s address indicates
that it should do so. The returned ReceiveStatus indicates the presence or absence of detected transmission
errors in the frame.

function RealTimeDelay (µsec:real)ReceiveDataDecap: BooleanReceiveStatus;
var status: ReceiveStatus; {Holds receive status information}
begin

{return the value true if the specified number of microseconds have
not elapsed since the most recent invocation of StartRealTimeDelay,
otherwise return the value false}

end; {RealTimeDelay}with incomingFrame do

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The BitTransmitter process runs asynchronously, transmitting bits at a rate determined by the Physical
Layer’s TransmitBit operation:

process BitTransmitter;
begin

cycle Outer loop}
if transmitting thenbegin

begin {Inner loop}view := fields;
extendError receiveSucceeding := falseLayerMgmtRecognizeAddress(destinationField);
if ifsStretchMode then {Calculate the counter values}receiveSucceeding then

beginbegin {Disassemble frame}
ifsStretchSize destinationParam := (ifsStretchCount + headerSize + frameSize + inter-

FrameSpacing) divdestinationField;
ifsStretchRatio; {Extension of the interframe spacing}

ifsStretchCount sourceParam := (ifsStretchCount + headerSize + frameSize + inter-
FrameSpacing)sourceField;

mod ifsStretchRatio {Remainder to carry over into the next frame’s transmission}
endlengthOrTypeParam := lengthOrTypeField;

PhysicalSignalEncap; {Send preamble and start of frame delimiter}dataParam := Remove-
Pad(lengthOrTypeField, dataField);

while transmitting do
beginfcsParamValue := fcsField;

if (currentTransmitBit > lastTransmitBit) then TransmitBit(extensionBit)fcsParamPre-
sent := passReceiveFCSMode;

else if extendError then TransmitBit(extensionErrorBit) {Jam in extension}
exceedsMaxLength := ...; {Check to determine if receive frame size exceeds the maximum

permitted frame size. MAC implementations may use either
maxUntaggedFrameSize or (maxUntaggedFrameSize +
qTagPrefixSize) for the maximum permitted frame size,
either as a constant or as a function of whether the frame being
received is a basic or tagged frame (see 3.2, 3.5). In
implementations that treat this as a constant, it is recommended
that the larger value be used. The use of the smaller value
in this case may result in valid tagged frames exceeding the

TransmitBit(extensionErrorBit) {jam in extensionmaximum permitted frame
size.}

else TransmitBit(outgoingFrame[currentTransmitBit]);
if newCollision then StartJam else NextBit

end;
if bursting then

begin
InterFrameSignal;
if extendError thenexceedsMaxLength then status := frameTooLong

else if transmitting then transmitting :=fcsField = CRC32(incomingFrame) then
called during InterFrameSignal}if validLength then status :=

receiveOK else status := lengthError
{TransmitFrame may have been called during InterFrameSig-

nal}else if excessBits = 0 then status := frameCheckError
else IncLargeCounter(lateCollision)status := alignmentError;

{Count late collisions which were missed by TransmitLinkMgmt}
LayerMgmtReceiveCounters(status); {Update receive counters in 5.2.4.3}

bursting view := bursting and (frameWaiting or transmitting)bits
endend {Disassemble frame}

end end; {Inner loopWith incomingFrame}

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

end {Outer loop}ReceiveDataDecap := status
end; {BitTransmitterReceiveDataDecap}

The bits transmitted to the physical layer can take one of four values: data zero (0), data one (1), extension-
Bit (EXTEND), or extensionErrorBit (EXTEND_ERROR). The values extensionBit and extensionErrorBit
are not transmitted between the first preamble bit of a frame and the last data bit of a frame under any cir-
cumstances. The BitTransmitter calls the procedure TransmitBit with bitParam = extensionBit only when it
is necessary to perform carrier extension on a frame after all of the data bits of a frame have been transmit-
ted. The BitTransmitter calls the procedure TransmitBit with bitParam = extensionErrorBit only when it is
necessary to jam during carrier extension.

procedure PhysicalSignalEncap;

function LayerMgmtRecognizeAddress(address: AddressValue): Boolean;
begin

while currentTransmitBit ≤ lastHeaderBit do
begin

TransmitBit(outgoingHeader[currentTransmitBit]); {Transmit header one bit at a time}
if {promiscuous receive enabled} then LayerMgmtRecognizeAddress := true;
else if address = ... {MAC station address} then LayerMgmtRecognizeAddress := true;
else if address = ... {Broadcast address} then LayerMgmtRecognizeAddress := true;
else if address = ... {One of the addresses on the multicast list and multicast reception is enabled} then

LayerMgmtRecognizeAddress := true;
currentTransmitBit else LayerMgmtRecognizeAddress := currentTransmitBit + 1false

end;
if newCollision then StartJam else currentTransmitBit := 1

end; {PhysicalSignalEncapLayerMgmtRecognizeAddress}

The procedure InterFrameSignal fills the interframe interval between the frames of a burst with extension-
Bits. InterFrameSignal also monitors the variable collisionDetect during the interframe interval between the
frames of a burst, and will end a burst if a collision occurs during the interframe interval. The procedural
model is defined such that a MAC operating in the burstMode will emit an extraneous sequence of
interFrameSize extensionBits in the event that there are no additional frames ready for transmission after
InterFrameSignal returns. Implementations may be able to avoid sending this extraneous sequence of exten-
sionBits if they have access to information (such as the occupancy of a transmit queue) that is not assumed
to be available to the procedural model.

procedure InterFrameSignal;
var interFrameCount, interFrameTotal: integer;

The function RemovePad strips any padding that was generated to meet the minFrameSize constraint, if pos-
sible. When the MAC sublayer operates in the mode that enables passing of the frame check sequence field
of all received frames to the MAC client (passReceiveFCSMode variable is true), it shall not strip the pad-
ding and it shall leave the data field of the frame intact. Length checking is provided for Length interpreta-
tions of the Length/Type field. For Length/Type field values in the range between maxValidFrame and
minTypeValue, the behavior of the RemovePad function is unspecified:

function RemovePad(var lengthOrTypeParam: LengthOrTypeValue; dataParam: DataValue): DataValue;
begin

interFrameCount := 0;if lengthOrTypeParam ≥ minTypeValue then
interFrameTotal := interFrameSpacing;begin
while interFrameCount < interFrameTotal do

begin
if not extendError then TransmitBit(extensionBit)

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

validLength := true; {Don’t perform length checking for Type field interpretations}
else TransmitBit(extensionErrorBit);RemovePad := dataParam
interFrameCount := interFrameCount + 1;end
else if collisionDetect and not extendError lengthOrTypeParam ≤ maxValidFrame then
begin
validLength := {For length interpretations of the Length/Type field, check to determine if value

represented by Length/Type field matches the received clientDataSize};
bursting := false;if validLength and not passReceiveFCSMode then
extendError := true;
interFrameCount := 0;
RemovePad := {Truncate the dataParam (when present) to the value represented by the

lengthOrTypeParam (in octets) and return the result}
interFrameTotal else RemovePad := jamSizedataParam

end
end; {InterFrameSignalRemovePad}

ReceiveLinkMgmt attempts repeatedly to receive the bits of a frame, discarding any fragments smaller than
the minimum valid frame size:

procedure NextBitReceiveLinkMgmt;
begin

currentTransmitBit := currentTransmitBit + 1;
if halfDuplex and burstStart and transmitSucceeding then {Carrier extension may be required}

transmitting := (currentTransmitBit ≤ max(lastTransmitBit, slotTime))
else transmitting := (currentTransmitBit ≤ lastTransmitBit)

end; {NextBit}

procedure StartJam;
begin

extendError := currentTransmitBit > lastTransmitBit;
currentTransmitBit := 1;
lastTransmitBit := jamSize;
newCollision := false

end; {StartJam}

BitTransmitter, upon detecting a new collision, immediately enforces it by calling StartJam to initiate the
transmission of the jam. The jam should contain a sufficient number of bits of arbitrary data so that it is
assured that both communicating stations detect the collision. (StartJam uses the first set of bits of the frame
up to jamSize, merely to simplify this program.)

4.0.2 Frame reception

The algorithms in this subclause define CSMA/CD Media Access sublayer frame reception.

The function ReceiveFrame implements the frame reception operation provided to the MAC client:

function ReceiveFrame (
begin

var destinationParam: AddressValue;repeat
var sourceParam: AddressValueStartReceive;

while receiving do nothing; {Wait for frame to finish arriving}
excessBits := frameSize mod 8;
frameSize := frameSize – excessBits; {Truncate to octet boundary}
receiveSucceeding := receiveSucceeding and (frameSize ≥ minFrameSize)

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 38

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

{Reject frames too small}
var lengthOrTypeParam: LengthOrTypeValue;until receiveSucceeding
var dataParam: DataValue;

end; {ReceiveLinkMgmt}

var fcsParamValue: CRCValueprocedure StartReceive;
var fcsParamPresent: Bit): ReceiveStatus;

function ReceiveDataDecap: ReceiveStatus; {Nested function; see body below}
begin

if receiveEnabled then
repeat

ReceiveLinkMgmt;
ReceiveFrame receiveSucceeding := ReceiveDataDecaptrue;

until receiveSucceeding
else ReceiveFrame receiving := receiveDisabledtrue

end; {ReceiveFrameStartReceive}

If enabled, ReceiveFrame calls ReceiveLinkMgmt to receive the next valid frame, and then calls the internal
function ReceiveDataDecap to return the frame’s fields to the MAC client if the frame’s address indicates
that it should do so. The returned ReceiveStatus indicates the presence or absence of detected transmission
errors in the frame.

The BitReceiver process runs asynchronously, receiving bits from the medium at the rate determined by the
Physical Layer’s ReceiveBit operation, partitioning them into frames, and optionally receiving them:

function ReceiveDataDecap: ReceiveStatusprocess BitReceiver;
‡ var status: ReceiveStatus; {Holds receive status information}

begin
‡ with incomingFrame do
‡ begin
‡ var view := fieldsb: PhysicalBit;

incomingFrameSize: integer; {Count of all bits received in frame including extension}
‡ receiveSucceeding := LayerMgmtRecognizeAddress(destinationField)frameFinished: Boolean;

if receiveSucceeding thenenableBitReceiver: Boolean;
currentReceiveBit: 1..frameSize; {Position of current bit in incomingFrame}

begin
begin cycle {Disassemble frameOuter loop}

destinationParam := destinationField;if receiveEnabled then
begin {Receive next frame from physical layer}

sourceParam currentReceiveBit := sourceField1;
lengthOrTypeParam incomingFrameSize := lengthOrTypeField0;
dataParam frameFinished := RemovePad(lengthOrTypeField, dataField)false;
fcsParamValue enableBitReceiver := fcsFieldreceiving;

PhysicalSignalDecap; {Skip idle, strip off preamble and sfd}
fcsParamPresent := passReceiveFCSMode;while receiveDataValid and not frameFinished

do
exceedsMaxLength := ...; {Check to determine if receive frame size exceeds the maximum

permitted frame size. MAC implementations may use either
maxUntaggedFrameSize or (maxUntaggedFrameSize +begin

{Inner loop to receive the rest of an incoming frame}
qTagPrefixSize) for the maximum permitted frame size,b :=

ReceiveBit; {Next bit from physical medium}
either as a constant or as a function of whether the frame being
received is a basic or tagged frame (see 3.2, 3.5). In

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

implementations that treat this as a constant, it is recommended-
incomingFrameSize := incomingFrameSize + 1;

that the larger value be used. The use of the smaller value
in this case may result in valid tagged frames exceeding theif

enableBitReceiver then {Append to frame}
maximum permitted frame size.}begin

if exceedsMaxLength then status incomingFrame[currentReceiveBit] := frameTooLongb;
else if fcsField = CRC32(incomingFrame) and extensionOK then

‡ if validLength then status currentReceiveBit := receiveOK else status := lengthError-
currentReceiveBit + 1
‡ else if excessBits = 0 or not extensionOK then status := frameCheckErrorend
‡ else status := alignmentError;end; {Inner loop}

beginif enableBitReceiver then
‡ if validLength then status: = receiveOKbegin
‡ else status: frameSize := lengthErrorcurrentReceiveBit – 1;

end
else

begin
‡ if excessBits = 0 or not extensionOK then statusreceiveSucceeding := fra-
meCheckErrortrue;
‡ else status receiving := alignmentErrorfalse

end;
‡ LayerMgmtReceiveCounters(status); {Update receive counters in 5.2.4.3}

view := bitsend {Enabled}
end {Disassemble frameOuter loop}

‡ end; {With incomingFrameBitReceiver}
‡ ReceiveDataDecap := status

end; {ReceiveDataDecap}

function RecognizeAddress (address: AddressValue): Boolean;
begin

RecognizeAddress := ...; {Returns true for the set of physical, broadcast,
and multicast-group addresses corresponding
to this station}

end; {RecognizeAddress}

function LayerMgmtRecognizeAddress(address: AddressValue): Boolean;
begin

if {promiscuous receive enabled} then LayerMgmtRecognizeAddress := true;
if address = ... {MAC station address} then LayerMgmtRecognizeAddress := true;
if address = ... {Broadcast address} then LayerMgmtRecognizeAddress := true;
if address = ... {One of the addresses on the multicast list and multicast reception is enabled} then

LayerMgmtRecognizeAddress := true;
procedure PhysicalSignalDecap;
begin

{Receive one bit at a time from physical medium until a valid sfd is detected, discard bits and return.}
LayerMgmtRecognizeAddress := false

end; {LayerMgmtRecognizeAddressPhysicalSignalDecap}

The function RemovePad strips any padding that was generated to meet the minFrameSize constraint, if pos-
sible. When the MAC sublayer operates in the mode that enables passing of the frame check sequence field
of all received frames to the MAC client (passReceiveFCSMode variable is true), it shall not strip the pad-
ding and it shall leave the data field of the frame intact. Length checking is provided for Length interpreta-

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

tions of the Length/Type field. For Length/Type field values in the range between maxValidFrame and
minTypeValue, the behavior of the RemovePad function is unspecified:

function RemovePad(var lengthOrTypeParam: LengthOrTypeValue; dataParam: DataValue): DataValue;
begin

if lengthOrTypeParam ≥ minTypeValue then
begin

validLength := true; {Don’t perform length checking for Type field interpretations}
RemovePad := dataParam

end
else if lengthOrTypeParam ≤ maxValidFrame then

begin
validLength := {For length interpretations of the Length/Type field, check to determine if value

represented by Length/Type field matches the received clientDataSize};
if validLength and not passReceiveFCSMode then

RemovePad := {Truncate the dataParam (when present) to the value represented by the
lengthOrTypeParam (in octets) and return the result}

else RemovePad := dataParam
end

end; {RemovePad}

ReceiveLinkMgmt attempts repeatedly to receive the bits of a frame, discarding any fragments from colli-
sions by comparing them to the minimum valid frame size:

procedure ReceiveLinkMgmt;
begin

repeat
StartReceive;
while receiving do nothing; {Wait for frame to finish arriving}
excessBits := frameSize mod 8;
frameSize := frameSize – excessBits; {Truncate to octet boundary}
receiveSucceeding := receiveSucceeding and (frameSize ≥ minFrameSize)

{Reject collision fragments}
until receiveSucceeding

end; {ReceiveLinkMgmt}

procedure StartReceive;
begin

receiveSucceeding := true;
receiving := true

end; {StartReceive}

The BitReceiver process runs asynchronously, receiving bits from the medium at the rate determined by the
Physical Layer’s ReceiveBit operation, partitioning them into frames, and optionally receiving them:

process BitReceiver;
var b: PhysicalBit;

incomingFrameSize: integer; {Count of all bits received in frame including extension}
frameFinished: Boolean;
enableBitReceiver: Boolean;
currentReceiveBit: 1..frameSize; {Position of current bit in incomingFrame}

begin
cycle {Outer loop}

if receiveEnabled then

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

begin {Receive next frame from physical layer}
currentReceiveBit := 1;
incomingFrameSize := 0;
frameFinished := false;
enableBitReceiver := receiving;
PhysicalSignalDecap; {Skip idle and extension, strip off preamble and sfd}
if enableBitReceiver then extensionOK := true;
while receiveDataValid and not frameFinished do

begin {Inner loop to receive the rest of an incoming frame}
b := ReceiveBit; {Next bit from physical medium}
incomingFrameSize := incomingFrameSize + 1;
if b = 0 or b = 1 then {Normal case}

if enableBitReceiver then {Append to frame}
begin

if incomingFrameSize > currentReceiveBit then extensionOK := false;
 {Errors in the extension get mapped to data bits on input}

incomingFrame[currentReceiveBit] := b;
currentReceiveBit := currentReceiveBit + 1

end
else if not extending then frameFinished := true; {b must be an extensionBit}
if incomingFrameSize ≥ slotTime then extending := false

end; {iInner loop}
if enableBitReceiver then

begin
frameSize := currentReceiveBit – 1;
receiveSucceeding := not extending;
receiving := false

end
end {Enabled}

end {Outer loop}
end; {BitReceiver}

The bits received from the physical layer can take one of three values: data zero (0), data one (1), or exten-
sionBit (EXTEND). The value extensionBit will not occur between the first preamble bit of a frame and the
last data bit of a frame in normal circumstances. Extension bits are counted by the BitReceiver but are not
appended to the incoming frame. The BitReceiver checks whether the bit received from the physical layer is
a data bit or an extensionBit before appending it to the incoming frame. Thus, the array of bits in incoming-
Frame will only contain data bits. The underlying Reconciliation Sublayer (RS) maps incoming
EXTEND_ERROR bits to normal data bits. Thus, the reception of additional data bits after the frame exten-
sion has started is an indication that the frame should be discarded.

procedure PhysicalSignalDecap;
begin

{Receive one bit at a time from physical medium until a valid sfd is detected, discard bits and return.}
end; {PhysicalSignalDecap}

The process SetExtending controls the extending variable, which determines whether a received frame must
be at least slotTime bits in length or merely minFrameSize bits in length to be considered valid by the BitRe-
ceiver. SetExtending sets the extending variable to true whenever receiveDataValid is de-asserted, while in
half duplex mode at an operating speed of 1000 Mb/s:

process SetExtending;
begin

cycle {Loop forever}

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

while receiveDataValid do nothing;
extending := extend and halfDuplex

end {Loop}
end; {SetExtending}

4A.2.10 Common procedures

The function CRC32 is used by both the transmit and receive algorithms to generate a 32-bit CRC value:

function CRC32(f: Frame): CRCValue;
begin

CRC32 := {The 32-bit CRC for the entire frame, excluding the FCS field (if present)}
end; {CRC32}

Purely to enhance readability, the following procedure is also defined:

procedure nothing; begin end;

The idle state of a process (that is, while waiting for some event) is cast as repeated calls on this procedure.

4A.3 Interfaces to/from adjacent layers

4A.3.1 Overview

The purpose of this clause is to provide precise definitions of the interfaces between the architectural layers
defined in Clause 1 in compliance with the Media Access Service Specification given in Clause 2. In addi-
tion, the services required from the physical medium are defined.

The notation used here is the Pascal language, in keeping with the procedural nature of the precise MAC
sublayer specification (see 4A.2). Each interface is described as a set of procedures or shared variables, or
both, that collectively provide the only valid interactions between layers. The accompanying text describes
the meaning of each procedure or variable and points out any implicit interactions among them.

Note that the description of the interfaces in Pascal is a notational technique, and in no way implies that they
can or should be implemented in software. This point is discussed more fully in 4A.2, that provides com-
plete Pascal declarations for the data types used in the remainder of this clause. Note also that the synchro-
nous (one frame at a time) nature of the frame transmission and reception operations is a property of the
architectural interface between the MAC client and MAC sublayers, and need not be reflected in the imple-
mentation interface between a station and its sublayer.

4A.3.2 Services provided by the MAC sublayer

The services provided to the MAC client by the MAC sublayer are transmission and reception of frames.
The interface through which the MAC client uses the facilities of the MAC sublayer therefore consists of a
pair of functions.

Functions:
TransmitFrame
ReceiveFrame

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 43

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Each of these functions has the components of a frame as its parameters (input or output), and returns a sta-
tus code as its result.

NOTE 1—The frame_check_sequence parameter defined in 2.3.1 and 2.3.2 is mapped here into two variables: fcsPar-
amValue and fcsParamPresent. This mapping has been defined for editorial convenience. The fcsParamPresent variable
indicates the presence or absence of the fcsParamValue variable in the two function calls. If the fcsParamPresent variable
is true, the fcsParamValue variable contains the frame check sequence for the corresponding frame. If the fcsParamPre-
sent variable is false, the fcsParamValue variable is unspecified. If the MAC sublayer does not support client-supplied
frame check sequence values, then the fcsParamPresent variable in TransmitFrame shall always be false.

NOTE 2—The mac_service_data_unit parameter defined in 2.3.1 and 2.3.2 is mapped here into two variables: lengthOr-
TypeParam and dataParam. This mapping has been defined for editorial convenience. The first two octets of the
mac_service_data_unit parameter contain the lengthOrTypeParam variable. The remaining octets of the
mac_service_data_unit parameter form the dataParam variable.

The MAC client transmits a frame by invoking TransmitFrame:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus;

The TransmitFrame operation is synchronous. Its duration is the entire attempt to transmit the frame; when
the operation completes, transmission has either succeeded or failed, as indicated by the resulting status
code:

‡ type TransmitStatus = (transmitDisabled, transmitOK, excessiveCollisionError,
lateCollisionErrorStatus);

The transmitDisabled status code indicates that the transmitter is not enabled. Successful transmission is
indicated by the status code transmitOK.. The code codes excessiveCollisionError indicates that the trans-
mission attempt was aborted due to excessive collisions, because and lateCollisionErrorStatus are artifacts
of heavy traffic or a network failure. MACs operating in the half duplex mode at the speed of 1000 MbC-
SMA/s CD MAC and maintained here for historical purposes. These codes are required to report lateColli-
sionErrorStatus in response to a late collision; MACs operating in the half never generated by this full
duplex mode at speeds of 100 Mb/s and below are not required to do soMAC. TransmitStatus is not used by
the service interface defined in 2.3.1. TransmitStatus may be used in an implementation dependent manner.

The MAC client accepts incoming frames by invoking ReceiveFrame:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus;

The ReceiveFrame operation is synchronous. The operation does not complete until a frame has been
received. The fields of the frame are delivered via the output parameters with a status code:

type ReceiveStatus = (receiveDisabled, receiveOK, lengthErrorframeTooLong, frameCheckError, align-

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

mentError);,
‡ type ReceiveStatus = (receiveDisabled, receiveOK, frameTooLong, frameCheckError,

lengthError, alignmentError);

The receiveDisabled status indicates that the receiver is not enabled. Successful reception is indicated by the
status code receiveOK. The frameTooLong error indicates that a frame was received whose frameSize was
beyond the maximum allowable frame size. The code frameCheckError indicates that the frame received
was damaged by a transmission error. The lengthError indicates that the lengthOrTypeParam value was both
consistent with a length interpretation of this field (i.e., its value was less than or equal to maxValidFrame),
and inconsistent with the frameSize of the received frame. The code alignmentError indicates that the frame
received was damaged, and that in addition, its length was not an integer number of octets. ReceiveStatus is
not mapped to any MAC client parameter by the service interface defined in 2.3.2. ReceiveStatus may be
used in an implementation dependent manner.

Note that maxValidFrame represents the maximum number of octets that can be carried in the MAC client
data field of a frame and is a constant, regardless of whether the frame is a basic or tagged frame (see 3.2 and
3.5). The maximum length of a frame (including all fields from the Destination address through the FCS,
inclusive) is either maxUntaggedFrameSize (for basic frames) or maxUntaggedFrameSize + qTagPrefix-
Size, for tagged frames.

4A.3.3 Services required from the physical layer

The interface through which the CSMA/CD MAC sublayer uses the facilities of the Physical Layer consists
of a function, a pair of procedures and four Boolean variablesvariables :

During transmission, the contents of an outgoing frame are passed from the MAC sublayer to the Physical
Layer by way of repeated use of the TransmitBit operation:

procedure TransmitBit (bitParam: PhysicalBit);

Each invocation of TransmitBit passes one new bit of the outgoing frame to the Physical Layer. The
TransmitBit operation is synchronous. The duration of the operation is the entire transmission of the bit. The
operation completes, completes when the Physical Layer is ready to accept the next bit and it transfers con-
trol to the MAC sublayer.

The overall event of data being transmitted is signaled to the Physical Layer by way of the variable
transmitting:

var transmitting: Boolean;

Before sending the first bit of a frame, the MAC sublayer sets transmitting to true, to inform the Physical
Media Access physical layer that a stream of bits will be presented via the TransmitBit operation. After the
last bit of the frame has been presented, the MAC sublayer sets transmitting to false to indicate the end of the
frame.

Function Procedures Variables

ReceiveBit TransmitBit collisionDetect

Wait carrierSense

receiveDataValid

transmitting

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The presence of a collision in the physical medium is signaled to the MAC sublayer by the variable
collisionDetect:

The collisionDetect variable is not used by this full duplex MAC but maintained as an artifact of the CSMA/
CD MAC’s interface to the physical layer.

var collisionDetect: Boolean;

The collisionDetect signal remains true during the duration of the collision.

NOTE—In full duplex mode, collision indications may still be generated by the Physical Layer; however, they are
ignored by the full duplex MAC.

The collisionDetect signal is generated only during transmission and is never true at any other time; in
particular, it cannot be used during frame reception to detect collisions between overlapping transmissions
from two or more other stations.

During reception, the contents of an incoming frame are retrieved from the Physical Layer by the MAC
sublayer via repeated use of the ReceiveBit operation:

function ReceiveBit: PhysicalBit;

Each invocation of ReceiveBit retrieves one new bit of the incoming frame from the Physical Layer. The
ReceiveBit operation is synchronous. Its duration is the entire reception of a single bit. Upon receiving a bit,
the MAC sublayer shall immediately request the next bit until all bits of the frame have been received. (See
4A.2 for details.)

The overall event of data being received is signaled to the MAC sublayer by the variable receiveDataValid:

var receiveDataValid: Boolean;

When the Physical Layer sets receiveDataValid to true, the MAC sublayer shall immediately begin retriev-
ing the incoming bits by the ReceiveBit operation. When receiveDataValid subsequently becomes false, the
MAC sublayer can begin processing the received bits as a completed frame. If an invocation of ReceiveBit
is pending when receiveDataValid becomes false, ReceiveBit returns an undefined value, which should be
discarded by the MAC sublayer. (See 4A.2 for details.)

NOTE—When a burst of frames is received in half duplex mode at an operating speed of 1000 Mb/s, the variable
receiveDataValid will remain true throughout the burst. Furthermore, the variable receiveDataValid remains true
throughout the extension field. In these respects, the behavior of the variable receiveDataValid is different from the
underlying GMII signal RX_DV, from which it may be derived. See 35.2.1.7.

The overall event of activity on the physical medium is signaled to the MAC sublayer by the variable
carrierSense:

The overall event of contention at the physical layer, indicating that the physical layer is not ready to accept
the next packet, is signaled to the MAC sublayer by the variable carrierSense:

var carrierSense: Boolean;

In half duplex mode, the The MAC sublayer shall monitor the value of carrierSense to defer its own trans-
missions when the medium physical layer is busy. The Physical Layer physical layer sets carrierSense to true
immediately upon detection of activity on contention within the physical mediumlayer. After the activity on
the physical medium contention ceases, carrierSense is set to false. Note that the true/false transitions of car-
rierSense are not defined to be precisely synchronized with the beginning and the end of the frame, but may
precede the beginning and lag the end, respectively. (See 4A.2 for details.) In full duplex mode, carrierSense
is undefined.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 46

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

While the label carrierSense does not accurately describe the condition presented by this variable, the name
is maintained as an artifact of the CSMA/CD MAC interface to the physical layer.

The Physical Layer also provides the procedure Wait:

procedure Wait (bitTimes: integer);

This procedure waits for the specified number of bit times. This allows the MAC sublayer to measure time
intervals in units of the (physical-medium-dependent) bit time.

Another important property of the Physical Layer, which is an implicit part of the interface presented to the
MAC sublayer, is the round-trip propagation time of the physical medium. Its value represents the maximum
time required for a signal to propagate from one end of the network to the other, and for a collision to propa-
gate back. The round-trip propagation time is primarily (but not entirely) a function of the physical size of
the network. The round-trip propagation time of the Physical Layer is defined in 4A.4 for a selection of
physical media.

4A.4 Specific implementations

4A.4.1 Compatibility overview

To provide total compatibility at all levels of the standard, it is required that each network component imple-
menting the CSMA/CD MAC sublayer procedure adheres rigidly to these specifications. The information
provided in 4A.4.2 provides design parameters for specific implementations of this access method. Varia-
tions from these values result in a system implementation that violates the standard.

A DTE shall be capable of operating in half duplex mode, full duplex mode, or both. In any given instantia-
tion of a network conforming to this standard, all stations shall be configured to use the same mode of
operation, either half duplex or full duplex.

All DTEs connected to a repeater or a mixing segment shall be configured to use the half duplex mode of
operation. When a pair of DTEs are connected to each other with a link segment, both devices shall be con-
figured to use the same mode of operation, either half duplex or full duplex.

4A.4.2 Allowable implementations

The following parameter values shall be used for their corresponding implementations:

NOTE 1—For 10 Mb/s implementations, the spacing between two successive non-colliding packets, from start of idle at
the end of the first packet to start of preamble of the subsequent packet, can have a minimum value of 47 BT (bit times),
at the AUI receive line of the DTE. This interFrameGap shrinkage is caused by variable network delays, added preamble
bits, and clock skew.

NOTE 2—For 1BASE-5 implementations, see also DTE Deference Delay in 12.9.2.

NOTE 3—For 1 Gb/s implementations, the spacing between two non-colliding packets, from the last bit of the FCS field
of the first packet to the first bit of the preamble of the second packet, can have a minimum value of 64 BT (bit times), as
measured at the GMII receive signals at the DTE. This interFrameGap shrinkage may be caused by variable network
delays, added preamble bits, and clock tolerances.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 47

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

NOTE 4—For 10 Gb/s implementations, the spacing between two packets, from the last bit of the FCS field of the first
packet to the first bit of the preamble of the second packet, can have a minimum value of 40 BT (bit times), as measured
at the XGMII receive signals at the DTE. This interFrameGap shrinkage may be caused by variable network delays and
clock tolerances.

NOTE 5—For 10 Gb/s implementations, the value of ifsStretchRatio of 104 bits adapts the average data rate of the MAC
sublayer to SONET/SDH STS-192 data rate (with frame granularity), for WAN-compatible applications of this standard.

4.4.2.1 Parameterized values

See 4A.4.2.

Parameters

Values

10 Mb/s
1BASE-5
100 Mb/s

1 Gb/s 10 Gb/s

slotTime 512 bit times 4096 bit times not applicable

interFrameGap 96 bits 96 bits 96 bits

attemptLimit 16 16 not applicable

backoffLimit 10 10 not applicable

jamSize 32 bits 32 bits not applicable

maxUntaggedFrameSize 1518 octets 1518 octets 1518 octets

minFrameSize 512 bits (64 octets) 512 bits (64 octets) 512 bits (64 octets)

burstLimit not applicable 65 536 bits not applicable

ifsStretchRatio not applicable not applicable 104 bits

Parameters Values

interFrameGap 96 bits

maxUntaggedFrameSize 1518 octets

minFrameSize 512 bits (64 octets)

WARNING

Any deviation from the above specified values may affect proper operation of the network.

WARNING

Any deviation from the above specified values may affect proper operation of the network.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 48

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4.4.2.2 Parameterized values

See 4A.4.2.

4.4.2.3 Parameterized values

See 4A.4.2.

4.4.2.4 Parameterized values

See 4A.4.2.

4.4.3 Configuration guidelines

The operational mode of the MAC may be determined either by the Auto-Negotiation functions specified in
Clause 28 and Clause 37, or through manual configuration. When manual configuration is used, the devices
on both ends of a link segment must be configured to matching modes to ensure proper operation. When
Auto-Negotiation is used, the MAC must be configured to the mode determined by Auto-Negotiation before
assuming normal operation.

NOTE—Improper configuration of duplex modes may result in improper network behavior.

