
IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
1 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99. Full-duplex media access control

99.1 Functional model of the MAC method

99.1.1 Overview

The architectural model described in Clause 1 is used in this clause to provide a functional description of the
LAN full-duplex MAC sublayer.

The MAC sublayer defines a medium-independent facility, built on the medium-dependent physical facility
provided by the Physical Layer, and under the access-layer-independent LAN LLC sublayer (or other MAC
client). It is applicable to a general class of point-to-point and point-to-multi-point media suitable for use
with the full-duplex media access discipline.

The LLC sublayer and the MAC sublayer together are intended to have the same function as that described
in the OSI model for the Data Link Layer alone. The major functionality in the MAC sublayer is limited to
data encapsulation (transmit and receive) along with the associated minor functions including:

a) Framing (frame boundary delimitation, frame synchronization)
b) Addressing (handling of source and destination addresses)
c) Error detection (detection of physical medium transmission errors)

This MAC does not support the half duplex mode of operation so there is no need for collision avoidance or
handling. Therefore, Media Access Management is limited to the transmission of bits to the physical layer
and delaying any transmission for an interframe gap.

An optional MAC control sublayer, architecturally positioned between LLC (or other MAC client) and the
MAC, is specified in Clause 31 and Clause 65. This MAC Control sublayer is transparent to both the under-
lying MAC and its client (typically LLC). The MAC sublayer operates independently of its client; i.e., it is
unaware whether the client is LLC or the MAC Control sublayer. This allows the MAC to be specified and
implemented in one manner, whether or not the MAC Control sublayer is implemented. References to LLC
as the MAC client in text and figures apply equally to the MAC Control sublayer, if implemented.

The remainder of this clause provides a functional model of this MAC method.

99.1.2 Full duplex operation

This subclause provides an overview of frame transmission and reception in terms of the functional model of
the architecture. This overview is descriptive, rather than definitional; the formal specifications of the opera-
tions described here are given in 99.2 and 99.3. Specific implementations for full duplex mechanisms that
meet this standard are given in 99.4. Figure 1–1 provides the architectural model described functionally in
the subclauses that follow.

The Physical Layer Signaling (PLS) component of the Physical Layer provides an interface to the MAC sub-
layer for the serial transmission of bits onto the physical media. For completeness, in the operational
description that follows some of these functions are included as descriptive material. The concise specifica-
tion of these functions is given in 99.2 for the MAC functions and in Clause 7 for PLS.

Transmit frame operations are independent from receive frame operations.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.1.2.1 Transmission

When a MAC client requests the transmission of a frame, the Transmit Data Encapsulation component of the
full duplex MAC sublayer constructs the frame from the client-supplied data. It prepends a preamble and a
Start Frame Delimiter to the beginning of the frame. Using information provided by the client, the MAC
sublayer also appends a PAD at the end of the MAC information field of sufficient length to ensure that the
transmitted frame length satisfies a minimum frame-size requirement. It also prepends destination and
source addresses, the length/type field, and appends a frame check sequence to provide for error detection. If
the MAC supports the use of client-supplied frame check sequence values, then it shall use the client-sup-
plied value, when present. If the use of client-supplied frame check sequence values is not supported, or if
the client-supplied frame check sequence value is not present, then the MAC shall compute this value.
Frame transmission may be initiated after the interframe delay, regardless of the presence of receive activity.

When operating in point-to-multi-point mode, contention avoidance with other traffic on the medium cannot
be managed by this MAC sublayer as there are multiple MACs in parallel with this one. Sublayers other than
this must be responsible for contention avoidance.

The Physical Layer performs the task of generating the signals on the medium that represent the bits of the
frame. A functional description of the Physical Layer is given in Clause 7 and beyond.

When transmission has completed, the MAC sublayer so informs the MAC client and awaits the next
request for frame transmission.

99.1.2.2 Reception

At each receiving station, the arrival of a frame is first detected by the Physical Layer, which responds by
synchronizing with the incoming preamble, and by turning on the receiveDataValid signal. As the encoded
bits arrive from the medium, they are decoded and translated back into binary data. The Physical Layer
passes subsequent bits up to the MAC sublayer, where the leading bits are discarded, up to and including the
end of the preamble and Start Frame Delimiter.

Meanwhile, the Receive Media Access Management component of the MAC sublayer, having observed
receiveDataValid, has been waiting for the incoming bits to be delivered. Receive Media Access Manage-
ment collects bits from the Physical Layer entity as long as the receiveDataValid signal remains on. When
the receiveDataValid signal is removed, the frame is truncated to an octet boundary, if necessary, and passed
to Receive Data Decapsulation for processing.

Receive Data Decapsulation checks the frame’s Destination Address field to decide whether the frame
should be received by this station. If so, it passes the Destination Address (DA), the Source Address (SA),
the Length/Type, the Data, and (optionally) the Frame Check Sequence (FCS) fields to the MAC client,
along with an appropriate status code, as defined in 99.3.2. It also checks for invalid MAC frames by
inspecting the frame check sequence to detect any damage to the frame enroute, and by checking for proper
octet-boundary alignment of the end of the frame. Frames with a valid FCS may also be checked for proper
octet-boundary alignment.

99.1.3 Relationships to the MAC client and physical layers

The MAC sublayer provides services to the MAC client required for the transmission and reception of
frames. Access to these services is specified in 99.3. The MAC sublayer makes a best effort to transfer a
serial stream of bits to the Physical Layer. Although certain errors are reported to the client, error recovery is
not provided by MAC. Error recovery may be provided by the MAC client or higher (sub)layers.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
3 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.1.4 Access method functional capabilities

The following summary of the functional capabilities of the MAC sublayer is intended as a quick reference
guide to the capabilities of the standard, as shown in Figure 99–1:

a) For Frame Transmission
1) Accepts data from the MAC client and constructs a frame.
2) Presents a bit-serial data stream to the Physical Layer for transmission on the medium.
NOTE—Assumes data passed from the client sublayer are octet multiples.

b) For Frame Reception
1) Receives a bit-serial data stream from the Physical Layer.
2) Presents to the MAC client sublayer frames that are either broadcast frames or directly

addressed to the local station.
3) Discards or passes to Network Management all frames not addressed to the receiving station.

c) Appends proper FCS value to outgoing frames and verifies full octet boundary alignment.
d) Checks incoming frames for transmission errors by way of FCS and verifies octet boundary alignment
e) Delays transmission of frame bit stream for specified interframe gap period.
f) Discards received transmissions that are less than a minimum length.
g) Appends preamble, Start Frame Delimiter, DA, SA, Length/Type field, and FCS to all frames, and

inserts PAD field for frames whose data length is less than a minimum value.
h) Removes preamble, Start Frame Delimiter, DA, SA, Length/Type field, FCS, and PAD field (if nec-

essary) from received frames.

TRANSMIT
DATA ENCAPSULATION

RECEIVE
DATA DECAPSULATION

TRANSMIT MEDIA
ACCESS MANAGEMENT

RECEIVE MEDIA
ACCESS MANAGEMENT

TRANSMIT
DATA ENCODING

RECEIVE
DATA DECODING

PHYSICAL LAYER SIGNALING

MAC CLIENT SUBLAYER

a1 c g b2 b3 d f h

a2 e b1

ACCESS TO PHYSICAL INTERFACE

ACCESS TO MAC CLIENT

Figure 99–1—Media access control functions

NOTE—a1, b2, etc., refer to functions listed in 99.1.4.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.2 Media access control (MAC) method: precise specification

99.2.1 Introduction

A precise algorithmic definition is given in this subclause, providing procedural model for the MAC process
with a program in the computer language Pascal. See references [B11] and [B34] for resource material. Note
whenever there is any apparent ambiguity concerning the definition of some aspect of the MAC method, it is
the Pascal procedural specification in 99.2.7 through 99.2.10 that should be consulted for the definitive
statement. Subclauses 99.2.2 through 99.2.6 provide, in prose, a description of the access mechanism with
the formal terminology to be used in the remaining subclauses.

99.2.2 Overview of the procedural model

The functions of the MAC method are presented below, modeled as a program written in the computer lan-
guage Pascal. This procedural model is intended as the primary specification of the functions to be provided
in any MAC sublayer implementation. It is important to distinguish, however, between the model and a real
implementation. The model is optimized for simplicity and clarity of presentation, while any realistic imple-
mentation shall place heavier emphasis on such constraints as efficiency and suitability to a particular imple-
mentation technology or computer architecture. In this context, several important properties of the
procedural model shall be considered.

99.2.2.1 Ground rules for the procedural model

a) First, it shall be emphasized that the description of the MAC sublayer in a computer language is in
no way intended to imply that procedures shall be implemented as a program executed by a com-
puter. The implementation may consist of any appropriate technology including hardware, firmware,
software, or any combination.

b) Similarly, it shall be emphasized that it is the behavior of any MAC sublayer implementations that
shall match the standard, not their internal structure. The internal details of the procedural model are
useful only to the extent that they help specify that behavior clearly and precisely.

c) The handling of incoming and outgoing frames is rather stylized in the procedural model, in the
sense that frames are handled as single entities by most of the MAC sublayer and are only serialized
for presentation to the Physical Layer. In reality, many implementations will instead handle frames
serially on a bit, octet or word basis. This approach has not been reflected in the procedural model,
since this only complicates the description of the functions without changing them in any way.

d) The model consists of algorithms designed to be executed by a number of concurrent processes;
these algorithms collectively implement the MAC procedure. The timing dependencies introduced
by the need for concurrent activity are resolved in two ways:
1) Processes Versus External Events. It is assumed that the algorithms are executed “very fast”

relative to external events, in the sense that a process never falls behind in its work and fails to
respond to an external event in a timely manner. For example, when a frame is to be received, it
is assumed that the Media Access procedure ReceiveFrame is always called well before the
frame in question has started to arrive.

2) Processes Versus Processes. Among processes, no assumptions are made about relative speeds
of execution. This means that each interaction between two processes shall be structured to
work correctly independent of their respective speeds. Note, however, that the timing of inter-
actions among processes is often, in part, an indirect reflection of the timing of external events,
in which case appropriate timing assumptions may still be made.

It is intended that the concurrency in the model reflect the parallelism intrinsic to the task of implementing the
MAC client and MAC procedures, although the actual parallel structure of the implementations is likely to vary.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
5 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.2.2.2 Use of pascal in the procedural model

Several observations need to be made regarding the method with which Pascal is used for the model. Some
of these observations are as follows:

a) The following limitations of the language have been circumvented to simplify the specification:
1) The elements of the program (variables and procedures, for example) are presented in logical

groupings, in top-down order. Certain Pascal ordering restrictions have thus been circumvented
to improve readability.

2) The process and cycle constructs of Concurrent Pascal, a Pascal derivative, have been intro-
duced to indicate the sites of autonomous concurrent activity. As used here, a process is simply
a parameterless procedure that begins execution at “the beginning of time” rather than being
invoked by a procedure call. A cycle statement represents the main body of a process and is
executed repeatedly forever.

3) The lack of variable array bounds in the language has been circumvented by treating frames as
if they are always of a single fixed size (which is never actually specified). The size of a frame
depends on the size of its data field, hence the value of the “pseudo-constant” frameSize should
be thought of as varying in the long term, even though it is fixed for any given frame.

4) The use of a variant record to represent a frame (as fields and as bits) follows the spirit but not
the letter of the Pascal Report, since it allows the underlying representation to be viewed as two
different data types.

b) The model makes no use of any explicit interprocess synchronization primitives. Instead, all
interprocess interaction is done by way of carefully stylized manipulation of shared variables. For
example, some variables are set by only one process and inspected by another process in such a
manner that the net result is independent of their execution speeds. While such techniques are not
generally suitable for the construction of large concurrent programs, they simplify the model and
more nearly resemble the methods appropriate to the most likely implementation technologies
(microcode, hardware state machines, etc.)

99.2.2.3 Organization of the procedural model

The procedural model used here is based on five cooperating concurrent processes. The Frame Transmitter
process and the Frame Receiver process are provided by the clients of the MAC sublayer (which may
include the LLC sublayer) and make use of the interface operations provided by the MAC sublayer. The
other three processes are defined to reside in the MAC sublayer. The five processes are as follows:

a) Frame Transmitter process
b) Frame Receiver process
c) Bit Transmitter process
d) Bit Receiver process
e) Deference process

This organization of the model is illustrated in Figure 99–2 and reflects the fact that the communication of
entire frames is initiated by the client of the MAC sublayer, while the timing of individual bit transfers is based
on interactions between the MAC sublayer and the Physical-Layer-dependent bit time.

Figure 99–2 depicts the static structure of the procedural model, showing how the various processes and pro-
cedures interact by invoking each other. Figures 99–3a, 99–3b, and 99–4 summarize the dynamic behavior
of the model during transmission and reception, focusing on the steps that shall be performed, rather than the
procedural structure that performs them. The usage of the shared state variables is not depicted in the fig-
ures, but is described in the comments and prose in the following subclauses.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.2.2.4 Layer management extensions to procedural model

In order to incorporate network management functions, this Procedural Model has been expanded beyond
that provided in ISO/IEC 8802-3: 1990. Network management functions have been incorporated in two
ways. First, 99.2.7–99.2.10, 99.3.2, Figure 99–3a, and Figure 99–3b have been modified and expanded to
provide management services. Second, Layer Management procedures have been added as 5.2.4. Note that
Pascal variables are shared between Clauses 99 and 5. Within the Pascal descriptions provided in Clause 99,
a “‡” in the left margin indicates a line that has been added to support management services. These lines are
only required if Layer Management is being implemented. These changes do not affect any aspect of the
MAC behavior as observed at the LLC-MAC and MAC-PLS interfaces of ISO/IEC 8802-3: 1990.

The Pascal procedural specification shall be consulted for the definitive statement when there is any appar-
ent ambiguity concerning the definition of some aspect of the MAC access method.

PHYSICAL LAYER

MEDIA ACCESS SUBLAYER

FrameTransmitter FrameReceiver

TransmitFrame

TransmitDataEncap ReceiveDataDecap

ReceiveFrame

CRC32ComputePad RemovePadLayerMgmt

TransmitLinkMgmt ReceiveLinkMgmt

StartTransmit

StartReceive

BitReceiverDeference

PhysicalSignalDecap

BitTransmitter

TransmitBit ReceiveBitWait

TRANSMIT RECEIVE

MEDIUM
MANAGEMENT

FRAMING

MAC CLIENT

Figure 99–2—Relationship among CSMA/CD procedures

RecognizeAddress

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
7 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The Layer Management facilities provided by the MAC and Physical Layer management definitions provide
the ability to manipulate management counters and initiate actions within the layers. The managed objects
within this standard are defined as sets of attributes, actions, notifications, and behaviors in accordance with
IEEE Std 802.1F-1993, and ISO/IEC International Standards for network management.

99.2.3 Frame transmission model

Frame transmission includes data encapsulation and Media Access management aspects:

a) Transmit Data Encapsulation includes the assembly of the outgoing frame (from the values provided
by the MAC client) and frame check sequence generation.

b) Transmit Media Access Management includes interframe spacing and bit transmission.

99.2.3.1 Transmit data encapsulation

The fields of the MAC frame are set to the values provided by the MAC client as arguments to the Transmit-
Frame operation (see 99.3) with the following possible exceptions: the padding field and the frame check
sequence. The padding field is necessary to enforce the minimum frame size. The frame check sequence
field may be (optionally) provided as an argument to the MAC sublayer. It is optional for a MAC to support
the provision of the frame check sequence in such an argument. If this field is provided by the MAC client,
the padding field shall also be provided by the MAC client, if necessary. If this field is not provided by the

TransmitFrame

Transmit
ENABLE?

assemble frame

deferring on?

start transmission

transmission
done?

Done:
transmitOK

no

yes

yes

no

no

yes

‡

‡ For Layer Management Done:
transmitDisabled

‡

a) TransmitFrame

Figure 99–3a—Control flow summary

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ReceiveFrame

Receive
ENABLE?

start receiving

done
receiving?

disassemble frame

extra bits?

Done:
receiveOK

no

yes

yes

no

‡

no

yes

‡ For Layer Management

Done:
receiveDisabled

‡

frame
too small?

recognize
address?

frame
too long?

valid

sequence?
frame check

valid

field?
length/type

Done:
lengthError

Done:
frameCheckError

Done:
alignmentError

Done:
frameTooLong

‡

‡

yes

yes

yes

yesyes

no

nono

no

no

b) ReceiveFrame

Figure 99–3b—Control flow summary

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
9 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

MAC client, or if the MAC does not support the provision of the frame check sequence as an external argu-
ment, it is set to the CRC value generated by the MAC sublayer, after appending the padding field, if neces-
sary.

no

yes

yes

no transmission
started?

transmit a bit

end of
frame?

transmission done

BitTransmitter process

yes

no receiving
started?

receive a bit

receiving done

BitReceiver process

fill interframeyes

no receiveDataValid
off or frameFinished

on?

Figure 99–4—Control flow

deferring on

transmitting?

no

deferring off

wait
interframe spacing

transmitting?

yes

yes

no

Deference process

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.2.3.2 Transmit media access management

99.2.3.2.1 Deference

When a frame is submitted by the MAC client for transmission, the transmission is initiated as soon as pos-
sible, but in conformance with the following rule. The MAC uses the internal variable transmitting to main-
tain proper MAC state while a transmission is in progress. After the last bit of a transmitted frame, (that is,
when transmitting changes from true to false), the MAC continues to defer for a proper interFrameSpacing
(see 99.2.3.2.2).

99.2.3.2.2 Interframe spacing

As defined in 99.2.3.2.1, the rule for deferring ensures a minimum interframe spacing of interFrameSpacing
bit times. This is intended to provide interframe recovery time to aid in frame delineation on the physical
medium.

Note that interFrameSpacing is the minimum value of the interframe spacing. If necessary for implementa-
tion reasons, a transmitting sublayer may use a larger value with a resulting decrease in its throughput. The
larger value is determined by the parameters of the implementation, see 99.4.

A larger value for interframe spacing is used for dynamically adapting the nominal data rate of the MAC
sublayer to SONET/SDH data rates (with packet granularity) for WAN-compatible applications of this stan-
dard. While in this optional mode of operation, the MAC sublayer counts the number of bits sent during a
frame’s transmission. After the frame’s transmission has been completed, the MAC sublayer extends the
minimum interframe spacing by a number of bits that is proportional to the length of the previously transmit-
ted frame. For more details, see 99.2.7 and 99.2.8.

99.2.3.2.3 Transmission

Transmissions may be initiated whenever the station has a frame queued, subject only to the interframe spac-
ing required to allow recovery for the physical medium.

99.2.4 Frame reception model

The MAC sublayer frame reception includes both data decapsulation and Media Access management aspects:

a) Receive Data Decapsulation comprises address recognition, frame check sequence validation, and
frame disassembly to pass the fields of the received frame to the MAC client.

b) Receive Media Access Management comprises assembly of frames from the received bits.

99.2.4.1 Receive data decapsulation

99.2.4.1.1 Address recognition

The MAC sublayer is capable of recognizing individual and group addresses.

a) Individual Addresses. The MAC sublayer recognizes and accepts any frame whose DA field con-
tains the individual address of the station.

b) Group Addresses. The MAC sublayer recognizes and accepts any frame whose DA field contains
the Broadcast address.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
11 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The MAC sublayer is capable of activating some number of group addresses as specified by higher layers.
The MAC sublayer recognizes and accepts any frame whose Destination Address field contains an active
group address. An active group address may be deactivated.

The MAC sublayer may also provide the capability of operating in the promiscuous receive mode. In this
mode of operation, the MAC sublayer recognizes and accepts all valid frames, regardless of their Destina-
tion Address field values.

99.2.4.1.2 Frame check sequence validation

FCS validation is essentially identical to FCS generation. If the bits of the incoming frame (exclusive of the
FCS field itself) do not generate a CRC value identical to the one received, an error has occurred and the
frame is identified as invalid.

99.2.4.1.3 Frame disassembly

Upon recognition of the Start Frame Delimiter at the end of the preamble sequence, the MAC sublayer
accepts the frame. If there are no errors, the frame is disassembled and the fields are passed to the MAC cli-
ent by way of the output parameters of the ReceiveFrame operation.

99.2.4.2 Receive media access management

99.2.4.2.1 Framing

The MAC sublayer recognizes the boundaries of an incoming frame by monitoring the receiveDataValid
signal provided by the Physical Layer. Two possible length errors can occur that indicate ill-framed data: the
frame may be too long, or its length may not be an integer number of octets.

a) Maximum Frame Size. The receiving MAC sublayer is not required to enforce the frame size limit,
but it is allowed to truncate frames longer than maxUntaggedFrameSize octets and report this event
as an (implementation-dependent) error. A receiving MAC sublayer that supports tagged MAC
frames (see 3.5) may similarly truncate frames longer than (maxUntaggedFrameSize + qTagPrefix-
Size) octets in length, and report this event as an (implementation-dependent) error.

b) Integer Number of Octets in Frame. Since the format of a valid frame specifies an integer number of
octets, only an error can produce a frame with a length that is not an integer multiple of 8 bits. Com-
plete frames that do not contain an integer number of octets are truncated to the nearest octet bound-
ary. If frame check sequence validation detects an error in such a frame, the status code
alignmentError is reported.

99.2.5 Preamble generation

In a LAN implementation, most of the Physical Layer components are allowed to provide valid output some
number of bit times after being presented valid input signals. Thus it is necessary for a preamble to be sent
before the start of data, to allow the PLS circuitry to reach its steady state. Upon request by TransmitLink-
Mgmt to transmit the first bit of a new frame, BitTransmitter shall first transmit the preamble, a bit sequence
used for physical medium stabilization and synchronization, followed by the Start Frame Delimiter. The pre-
amble pattern is:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

The bits are transmitted in order, from left to right. The nature of the pattern is such that, for Manchester
encoding, it appears as a periodic waveform on the medium that enables bit synchronization. It should be
noted that the preamble ends with a “0.”

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.2.6 Start frame sequence

The receiveDataValid signal is the indication to the MAC that the frame reception process should begin.
Upon reception of the sequence 10101011 following the assertion of receiveDataValid, PhysicalSignalDe-
cap shall begin passing successive bits to ReceiveLinkMgmt for passing to the MAC client.

99.2.7 Global declarations

This subclause provides detailed formal specifications for the MAC sublayer. It is a specification of generic
features and parameters to be used in systems implementing this media access method. Subclause 99.4 pro-
vides values for these sets of parameters for recommended implementations of this media access mecha-
nism.

99.2.7.1 Common constants, types, and variables

The following declarations of constants, types and variables are used by the frame transmission and recep-
tion sections of each MAC sublayer:

const
addressSize = 48; {In bits, in compliance with 3.2.3}
lengthOrTypeSize = 16; {In bits}
clientDataSize = ...; {In bits, size of MAC client data; see 99.2.2.2, a) 3)}
padSize = ...; {In bits, = max (0, minFrameSize – (2 x addressSize + lengthOrTypeSize +

clientDataSize + crcSize))}
dataSize = ...; {In bits, = clientDataSize + padSize}
crcSize = 32; {In bits, 32-bit CRC}
frameSize = ...; {In bits, = 2 x addressSize + lengthOrTypeSize + dataSize + crcSize; see 4.2.2.2, a)}
minFrameSize = ... ; {In bits, implementation-dependent, see 4.4}
maxUntaggedFrameSize = ... ; {iIn octets, implementation-dependent, see 4.4}
qTagPrefixSize = 4; {In octets, length of QTag Prefix, see 3.5}
minTypeValue = 1536; {Minimum value of the Length/Type field for Type interpretation}
maxValidFrame = maxUntaggedFrameSize – (2 x addressSize + lengthOrTypeSize + crcSize) / 8;

{In octets, the maximum length of the MAC client data field. This constant is
defined for editorial convenience, as a function of other constants}

preambleSize = 56; {In bits, see 4.2.5}
sfdSize = 8; {In bits, start frame delimiter}

headerSize = 64; {In bits, sum of preambleSize and sfdSize}
type

Bit = (0, 1);
PhysicalBit = (0, 1); {Bits transmitted to the Physical Layer can be either 0 or 1. Bits received

from the Physical Layer can be either 0 or 1}
AddressValue = array [1..addressSize] of Bit;
LengthOrTypeValue = array [1..lengthOrTypeSize] of Bit;
DataValue = array [1..dataSize] of Bit; {Contains the portion of the frame that starts with the first bit

following the Length/Type field and ends with the last bit
prior to the FCS field. For VLAN Tagged frames, this value
includes the Tag Control Information field and the original
MAC client Length/Type field. See 3.5}

CRCValue = array [1..crcSize] of Bit;
PreambleValue = array [1..preambleSize] of Bit;
SfdValue = array [1..sfdSize] of Bit;
ViewPoint = (fields, bits); {Two ways to view the contents of a frame}
HeaderViewPoint = (headerFields, headerBits);

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
13 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Frame = record {Format of Media Access frame}
case view: ViewPoint of

fields: (
destinationField: AddressValue;
sourceField: AddressValue;
lengthOrTypeField: LengthOrTypeValue;
dataField: DataValue;
fcsField: CRCValue);

bits: (contents: array [1..frameSize] of Bit)
end; {Frame}

Header = record {Format of preamble and start frame delimiter}
case headerView: HeaderViewPoint of

headerFields: (
preamble: PreambleValue;
sfd: SfdValue);
headerContents: array [1..headerSize] of Bit)

headerBits: (headerContents: array [1..headerSize] of Bit)
end; {Defines header for MAC frame}

99.2.7.2 Transmit state variables

The following items are specific to frame transmission. (See also 99.4.)

const
interFrameSpacing = ...; {In bit times, minimum gap between frames. Equal to interFrameGap,

see 99.4}
ifsStretchRatio = ...; {In bits, determines the number of bits in a frame that require one octet of

interFrameSpacing extension, when ifsStretchMode is enabled; implementation
dependent, see 4.4}

var
outgoingFrame: Frame; {The frame to be transmitted}
outgoingHeader: Header;
currentTransmitBit, lastTransmitBit: 1..frameSize; {Positions of current and last outgoing bits in

outgoingFrame}
lastHeaderBit: 1..headerSize;
deferring: Boolean; {Implies any pending transmission must wait}
frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
ifsStretchMode: Boolean; {Indicates the desired mode of operation, and enables the lowering of the

average data rate of the MAC sublayer (with frame granularity), using
extension of the minimum interFrameSpacing. ifsStretchMode is a static
variable; its value shall only be changed by the invocation of the Initialize
procedure}

ifsStretchCount: 0..ifsStretchRatio; {In bits, a running counter that counts the number of bits during a
frame’s transmission that are to be considered for the minimum
interFrameSpacing extension, while operating in ifsStretchMode}

ifsStretchSize: 0..(((maxUntaggedFrameSize + qTagPrefixSize) x 8 + headerSize + interFrameSpacing
+ ifsStretchRatio – 1) div ifsStretchRatio);
{In octets, a running counter that counts the integer number of octets that are to be
added to the minimum interFrameSpacing, while operating in ifsStretchMode}

p2mpMode: Boolean; {Indicates the desired mode of operation, and disables waiting for the deferring
variable before transmitting}

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.2.7.3 Receive state variables

The following items are specific to frame reception. (See also 99.4.)

var
incomingFrame: Frame; {The frame being received}
receiving: Boolean; {Indicates that a frame reception is in progress}
excessBits: 0..7; {Count of excess trailing bits beyond octet boundary}
receiveSucceeding: Boolean; {Running indicator of whether reception is succeeding}
validLength: Boolean; {Indicator of whether received frame has a length error}
exceedsMaxLength: Boolean; {Indicator of whether received frame has a length longer than the

maximum permitted length}
passReceiveFCSMode: Boolean; {Indicates the desired mode of operation, and enables passing of

the frame check sequence field of all received frames from the
MAC sublayer to the MAC client. passReceiveFCSMode is a
static variable}

99.2.7.4 Summary of interlayer interfaces

a) The interface to the MAC client, defined in 99.3.2, is summarized below:

type
TransmitStatus = (transmitDisabled, transmitOK);

{Result of TransmitFrame operation}
ReceiveStatus = (receiveDisabled, receiveOK, frameTooLong, frameCheckError, lengthError,

alignmentError); {Result of ReceiveFrame operation}
function TransmitFrame (

destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus; {Transmits one frame}

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus; {Receives one frame}

b) The interface to the Physical Layer, defined in 99.3.3, is summarized in the following:

var
receiveDataValid: Boolean; {Indicates incoming bits}
transmitting: Boolean; {Indicates outgoing bits}

procedure TransmitBit (bitParam: PhysicalBit); {Transmits one bit}
function ReceiveBit: PhysicalBit; {Receives one bit}
procedure Wait (bitTimes: integer); {Waits for indicated number of bit times}

99.2.7.5 State variable initialization

The procedure Initialize must be run when the MAC sublayer begins operation, before any of the processes
begin execution. Initialize sets certain crucial shared state variables to their initial values. (All other global

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
15 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

variables are appropriately reinitialized before each use.) Initialize then starts operation of the various pro-
cesses.

If Layer Management is implemented, the Initialize procedure shall only be called as the result of the initial-
izeMAC action (30.3.1.2.1).

procedure Initialize;
begin

frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
deferring := false;
transmitting := false; {An interface to Physical Layer; see below}
receiving := false;
passReceiveFCSMode := ...; {True when enabling the passing of the frame check sequence of all

received frames from the MAC sublayer to the MAC client is desired and
supported, false otherwise}

ifsStretchMode := ...; {True for operating speeds above 1000 Mb/s when lowering the average data rate
of the MAC sublayer (with frame granularity) is desired and supported, false
otherwise}

ifsStretchCount := 0;
ifsStretchSize := 0;
p2mpMode := ...; {True for Point-to-Multi-Point implementations, false otherwise}
while receiveDataValid do nothing
{Start execution of all processes}

end; {Initialize}

99.2.8 Frame transmission

The algorithms in this subclause define MAC sublayer frame transmission. The function TransmitFrame
implements the frame transmission operation provided to the MAC client:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus;

procedure TransmitDataEncap; {Nested procedure; see body below}
begin

if transmitEnabled then
begin

TransmitDataEncap;
TransmitFrame := TransmitLinkMgmt

end
else TransmitFrame := transmitDisabled

end; {TransmitFrame}

If transmission is enabled, TransmitFrame calls the internal procedure TransmitDataEncap to construct the
frame. Next, TransmitLinkMgmt is called to perform the actual transmission. The TransmitStatus returned
indicates the success or failure of the transmission attempt.

TransmitDataEncap builds the frame and places the 32-bit CRC in the frame check sequence field:

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

procedure TransmitDataEncap;
begin

with outgoingFrame do
begin {Assemble frame}

view := fields;
destinationField := destinationParam;
sourceField := sourceParam;
lengthOrTypeField := lengthOrTypeParam;
if fcsParamPresent then

begin
dataField := dataParam; {No need to generate pad if the FCS is passed from MAC client}
fcsField := fcsParamValue {Use the FCS passed from MAC client}

end
else

begin
dataField := ComputePad(dataParam);
fcsField := CRC32(outgoingFrame)

end;
view := bits

end {Assemble frame}
with outgoingHeader do

begin
headerView := headerFields;
preamble := ...; {* ‘1010...10,’ LSB to MSB*}
sfd := ...; {* ‘10101011,’ LSB to MSB*}
headerView := headerBits

end
end; {TransmitDataEncap}

If the MAC client chooses to generate the frame check sequence field for the frame, it passes this field to the
MAC sublayer via the fcsParamValue parameter. If the fcsParamPresent parameter is true, TransmitDataEn-
cap uses the fcsParamValue parameter as the frame check sequence field for the frame. Such a frame shall
not require any padding, since it is the responsibility of the MAC client to ensure that the frame meets the
minFrameSize constraint. If the fcsParamPresent parameter is false, the fcsParamValue parameter is unspec-
ified. TransmitDataEncap first calls the ComputePad function, followed by a call to the CRC32 function to
generate the padding (if necessary) and the frame check sequence field for the frame internally to the MAC
sublayer.

ComputePad appends an array of arbitrary bits to the MAC client data to pad the frame to the minimum
frame size:

begin
ComputePad := {Append an array of size padSize of arbitrary bits to the MAC client dataField}

end; {ComputePadParam}

function ComputePad(var dataParam: DataValue): DataValue;
begin

ComputePad := {Append an array of size padSize of arbitrary bits to the MAC client dataField}
end; {ComputePad}

TransmitLinkMgmt attempts to transmit the frame. It first defers to ensure proper interframe spacing:

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
17 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

function TransmitLinkMgmt: TransmitStatus;
begin

frameWaiting := true;
if not p2mpMode then while deferring do nothing {Defer to ensure proper interframe spacing}
StartTransmit;
frameWaiting := false;
while transmitting do nothing {Full duplex mode}
LayerMgmtTransmitCounters; {Update transmit and transmit error counters in 5.2.4.2}
TransmitLinkMgmt := transmitOK

end; {TransmitLinkMgmt}

If the p2mpMode is enabled, then IPG is enforced outside this sublayer. If it is not enabled, then the IPG is
timed using the Deference process.

Each time a frame transmission attempt is initiated, StartTransmit is called to alert the BitTransmitter pro-
cess that bit transmission should begin:

procedure StartTransmit;
begin

currentTransmitBit := 1;
lastTransmitBit := frameSize;
transmitting := true;
lastHeaderBit:= headerSize

end; {StartTransmit}

The Deference process runs asynchronously to continuously compute the proper value for the variable defer-
ring. Interframe spacing may be used to lower the average data rate of a MAC at operating speeds above
1000 Mb/s in the full duplex mode, when it is necessary to adapt it to the data rate of a WAN-based physical
layer. When interframe stretching is enabled, deferring remains true throughout the entire extended inter-
frame gap, which includes the sum of interFrameSpacing and the interframe extension as determined by the
BitTransmitter:

process Deference;
begin

cycle {Main loop}
while not transmitting do nothing; {Wait for the start of a transmission}
deferring := true; {Inhibit future transmissions}
while transmitting do nothing; {Wait for the end of the current transmission}
Wait(interFrameSpacing + ifsStretchSize x 8); {Time out entire interframe gap and IFS extension}
if not frameWaiting then {Don’t roll over the remainder into the next frame}

begin
Wait(8);
ifsStretchCount := 0

end
deferring := false {Don’t inhibit transmission}

end {Main loop}
end; {Deference}

Editors note: To be removed prior to final publication

This test for p2mpMode is option #1 to making the IPG optional for P2MP.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If the ifsStretchMode is enabled, the Deference process continues to enforce interframe spacing for an addi-
tional number of bit times, after the completion of timing the interFrameSpacing. The additional number of
bit times is reflected by the variable ifsStretchSize. If the variable ifsStretchCount is less than ifsStretchRa-
tio and the next frame is ready for transmission (variable frameWaiting is true), the Deference process
enforces interframe spacing only for the integer number of octets, as indicated by ifsStretchSize, and saves
ifsStretchCount for the next frame’s transmission. If the next frame is not ready for transmission (variable
frameWaiting is false), then the Deference process initializes the ifsStretchCount variable to zero.

The BitTransmitter process runs asynchronously, transmitting bits at a rate determined by the Physical
Layer’s TransmitBit operation:

process BitTransmitter;
begin

cycle {Outer loop}
if transmitting then

begin {Inner loop}
if ifsStretchMode then {Calculate the counter values}

begin
ifsStretchSize := (ifsStretchCount + headerSize + frameSize + interFrameSpacing) div

ifsStretchRatio; {Extension of the interframe spacing}
ifsStretchCount := (ifsStretchCount + headerSize + frameSize + interFrameSpacing)

mod ifsStretchRatio {Remainder to carry over into the next frame’s transmission}
end;

while transmitting do
begin

TransmitBit(outgoingFrame[currentTransmitBit]);
currentTransmitBit := currentTransmitBit + 1;
transmitting := (currentTransmitBit ≤ lastTransmitBit)

end;
end {Inner loop}

end {Outer loop}
end; {BitTransmitter}

99.2.9 Frame reception

The algorithms in this subclause define the MAC sublayer frame reception.

The function ReceiveFrame implements the frame reception operation provided to the MAC client:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus;

function ReceiveDataDecap: ReceiveStatus; {Nested function; see body below}
begin

if receiveEnabled then
repeat

ReceiveLinkMgmt;
ReceiveFrame := ReceiveDataDecap;

until receiveSucceeding
else ReceiveFrame := receiveDisabled

end; {ReceiveFrame}

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
19 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If enabled, ReceiveFrame calls ReceiveLinkMgmt to receive the next valid frame, and then calls the internal
function ReceiveDataDecap to return the frame’s fields to the MAC client if the frame’s address indicates
that it should do so. The returned ReceiveStatus indicates the presence or absence of detected transmission
errors in the frame.

function ReceiveDataDecap: ReceiveStatus;
‡ var status: ReceiveStatus; {Holds receive status information}

begin
‡ with incomingFrame do
‡ begin
‡ view := fields;
‡ receiveSucceeding := LayerMgmtRecognizeAddress(destinationField);

if receiveSucceeding then
begin {Disassemble frame}

destinationParam := destinationField;
sourceParam := sourceField;
lengthOrTypeParam := lengthOrTypeField;
dataParam := RemovePad(lengthOrTypeField, dataField);
fcsParamValue := fcsField;
fcsParamPresent := passReceiveFCSMode;
exceedsMaxLength := ...; {Check to determine if receive frame size exceeds the maximum

permitted frame size. MAC implementations may use either
maxUntaggedFrameSize or (maxUntaggedFrameSize +
qTagPrefixSize) for the maximum permitted frame size,
either as a constant or as a function of whether the frame being
received is a basic or tagged frame (see 3.2, 3.5). In
implementations that treat this as a constant, it is recommended
that the larger value be used. The use of the smaller value
in this case may result in valid tagged frames exceeding the
maximum permitted frame size.}

if exceedsMaxLength then status := frameTooLong
else if fcsField = CRC32(incomingFrame) then

‡ if validLength then status := receiveOK else status := lengthError
‡ else if excessBits = 0 then status := frameCheckError
‡ else status := alignmentError;
‡ LayerMgmtReceiveCounters(status); {Update receive counters in 5.2.4.3}

view := bits
end {Disassemble frame}

‡ end; {With incomingFrame}
‡ ReceiveDataDecap := status

end; {ReceiveDataDecap}

function RecognizeAddress (address: AddressValue): Boolean;
begin

RecognizeAddress := ...; {Returns true for the set of physical, broadcast,
and multicast-group addresses corresponding
to this station}

end; {RecognizeAddress}

function LayerMgmtRecognizeAddress(address: AddressValue): Boolean;
begin

if {promiscuous receive enabled} then LayerMgmtRecognizeAddress := true;
if address = ... {MAC station address} then LayerMgmtRecognizeAddress := true;
if address = ... {Broadcast address} then LayerMgmtRecognizeAddress := true;

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

if address = ... {One of the addresses on the multicast list and multicast reception is enabled} then
LayerMgmtRecognizeAddress := true;

LayerMgmtRecognizeAddress := false
end; {LayerMgmtRecognizeAddress}

The function RemovePad strips any padding that was generated to meet the minFrameSize constraint, if pos-
sible. When the MAC sublayer operates in the mode that enables passing of the frame check sequence field
of all received frames to the MAC client (passReceiveFCSMode variable is true), it shall not strip the pad-
ding and it shall leave the data field of the frame intact. Length checking is provided for Length interpreta-
tions of the Length/Type field. For Length/Type field values in the range between maxValidFrame and
minTypeValue, the behavior of the RemovePad function is unspecified:

function RemovePad(var lengthOrTypeParam: LengthOrTypeValue; dataParam: DataValue): DataValue;
begin

if lengthOrTypeParam ≥ minTypeValue then
begin

validLength := true; {Don’t perform length checking for Type field interpretations}
RemovePad := dataParam

end
else if lengthOrTypeParam ≤ maxValidFrame then

begin
validLength := {For length interpretations of the Length/Type field, check to determine if value

represented by Length/Type field matches the received clientDataSize};
if validLength and not passReceiveFCSMode then

RemovePad := {Truncate the dataParam (when present) to the value represented by the
lengthOrTypeParam (in octets) and return the result}

else RemovePad := dataParam
end

end; {RemovePad}

ReceiveLinkMgmt attempts repeatedly to receive the bits of a frame, discarding any fragments smaller than
the minimum valid frame size:

procedure ReceiveLinkMgmt;
begin

repeat
StartReceive;
while receiving do nothing; {Wait for frame to finish arriving}
excessBits := frameSize mod 8;
frameSize := frameSize – excessBits; {Truncate to octet boundary}
receiveSucceeding := receiveSucceeding and (frameSize ≥ minFrameSize)

{Reject frames too small}
until receiveSucceeding

end; {ReceiveLinkMgmt}

procedure StartReceive;
begin

receiveSucceeding := true;
receiving := true

end; {StartReceive}

The BitReceiver process runs asynchronously, receiving bits from the medium at the rate determined by the
Physical Layer’s ReceiveBit operation, partitioning them into frames, and optionally receiving them:

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
21 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

process BitReceiver;
var b: PhysicalBit;

incomingFrameSize: integer; {Count of all bits received in frame including extension}
frameFinished: Boolean;
enableBitReceiver: Boolean;
currentReceiveBit: 1..frameSize; {Position of current bit in incomingFrame}

begin
cycle {Outer loop}

if receiveEnabled then
begin {Receive next frame from physical layer}

currentReceiveBit := 1;
incomingFrameSize := 0;
frameFinished := false;
enableBitReceiver := receiving;
PhysicalSignalDecap; {Skip idle and extension, strip off preamble and sfd}
while receiveDataValid and not frameFinished do

begin {Inner loop to receive the rest of an incoming frame}
b := ReceiveBit; {Next bit from physical medium}
incomingFrameSize := incomingFrameSize + 1;
if enableBitReceiver then {Append to frame}
begin

incomingFrame[currentReceiveBit] := b;
currentReceiveBit := currentReceiveBit + 1

end
end; {Inner loop}

if enableBitReceiver then
begin

frameSize := currentReceiveBit – 1;
receiveSucceeding := true;
receiving := false

end
end {Enabled}

end {Outer loop}
end; {BitReceiver}

procedure PhysicalSignalDecap;
begin

{Receive one bit at a time from physical medium until a valid sfd is detected, discard bits and return.}
end; {PhysicalSignalDecap}

99.2.10 Common procedures

The function CRC32 is used by both the transmit and receive algorithms to generate a 32-bit CRC value:

function CRC32(f: Frame): CRCValue;
begin

CRC32 := {The 32-bit CRC for the entire frame, excluding the FCS field (if present)}
end; {CRC32}

Purely to enhance readability, the following procedure is also defined:

procedure nothing; begin end;

The idle state of a process (that is, while waiting for some event) is cast as repeated calls on this procedure.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.3 Interfaces to/from adjacent layers

99.3.1 Overview

The purpose of this clause is to provide precise definitions of the interfaces between the architectural layers
defined in Clause 1 in compliance with the Media Access Service Specification given in Clause 2. In addi-
tion, the services required from the physical medium are defined.

The notation used here is the Pascal language, in keeping with the procedural nature of the precise MAC
sublayer specification (see 99.2). Each interface is described as a set of procedures or shared variables, or
both, that collectively provide the only valid interactions between layers. The accompanying text describes
the meaning of each procedure or variable and points out any implicit interactions among them.

Note that the description of the interfaces in Pascal is a notational technique, and in no way implies that they
can or should be implemented in software. This point is discussed more fully in 99.2, that provides complete
Pascal declarations for the data types used in the remainder of this clause. Note also that the synchronous
(one frame at a time) nature of the frame transmission and reception operations is a property of the architec-
tural interface between the MAC client and MAC sublayers, and need not be reflected in the implementation
interface between a station and its sublayer.

99.3.2 Services provided by the MAC sublayer

The services provided to the MAC client by the MAC sublayer are transmission and reception of frames.
The interface through which the MAC client uses the facilities of the MAC sublayer therefore consists of a
pair of functions.

Functions:
TransmitFrame
ReceiveFrame

Each of these functions has the components of a frame as its parameters (input or output), and returns a sta-
tus code as its result.

NOTE 1—The frame_check_sequence parameter defined in 2.3.1 and 2.3.2 is mapped here into two variables: fcsPar-
amValue and fcsParamPresent. This mapping has been defined for editorial convenience. The fcsParamPresent variable
indicates the presence or absence of the fcsParamValue variable in the two function calls. If the fcsParamPresent variable
is true, the fcsParamValue variable contains the frame check sequence for the corresponding frame. If the fcsParamPre-
sent variable is false, the fcsParamValue variable is unspecified. If the MAC sublayer does not support client-supplied
frame check sequence values, then the fcsParamPresent variable in TransmitFrame shall always be false.

NOTE 2—The mac_service_data_unit parameter defined in 2.3.1 and 2.3.2 is mapped here into two variables: lengthOr-
TypeParam and dataParam. This mapping has been defined for editorial convenience. The first two octets of the
mac_service_data_unit parameter contain the lengthOrTypeParam variable. The remaining octets of the
mac_service_data_unit parameter form the dataParam variable.

The MAC client transmits a frame by invoking TransmitFrame:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus;

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
23 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The TransmitFrame operation is synchronous. Its duration is the entire attempt to transmit the frame; when
the operation completes, transmission has either succeeded or failed, as indicated by the resulting status
code:

‡ type TransmitStatus = (transmitDisabled, transmitOK);

The transmitDisabled status code indicates that the transmitter is not enabled. Successful transmission is
indicated by the status code transmitOK. TransmitStatus is not used by the service interface defined in 2.3.1.
TransmitStatus may be used in an implementation dependent manner.

The MAC client accepts incoming frames by invoking ReceiveFrame:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus;

The ReceiveFrame operation is synchronous. The operation does not complete until a frame has been
received. The fields of the frame are delivered via the output parameters with a status code:

‡ type ReceiveStatus = (receiveDisabled, receiveOK, frameTooLong, frameCheckError,
lengthError, alignmentError);

The receiveDisabled status indicates that the receiver is not enabled. Successful reception is indicated by the
status code receiveOK. The frameTooLong error indicates that a frame was received whose frameSize was
beyond the maximum allowable frame size. The code frameCheckError indicates that the frame received
was damaged by a transmission error. The lengthError indicates that the lengthOrTypeParam value was both
consistent with a length interpretation of this field (i.e., its value was less than or equal to maxValidFrame),
and inconsistent with the frameSize of the received frame. The code alignmentError indicates that the frame
received was damaged, and that in addition, its length was not an integer number of octets. ReceiveStatus is
not mapped to any MAC client parameter by the service interface defined in 2.3.2. ReceiveStatus may be
used in an implementation dependent manner.

Note that maxValidFrame represents the maximum number of octets that can be carried in the MAC client
data field of a frame and is a constant, regardless of whether the frame is a basic or tagged frame (see 3.2 and
3.5). The maximum length of a frame (including all fields from the Destination address through the FCS,
inclusive) is either maxUntaggedFrameSize (for basic frames) or maxUntaggedFrameSize + qTagPrefix-
Size, for tagged frames.

99.3.3 Services required from the physical layer

The interface through which the MAC sublayer uses the facilities of the Physical Layer consists of a func-
tion, a pair of procedures and two Boolean variables:

Function Procedures Variables

ReceiveBit TransmitBit receiveDataValid

Wait transmitting

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

During transmission, the contents of an outgoing frame are passed from the MAC sublayer to the Physical
Layer by way of repeated use of the TransmitBit operation:

procedure TransmitBit (bitParam: PhysicalBit);

Each invocation of TransmitBit passes one new bit of the outgoing frame to the Physical Layer. The
TransmitBit operation is synchronous. The duration of the operation is the entire transmission of the bit. The
operation completes when the Physical Layer is ready to accept the next bit and it transfers control to the
MAC sublayer.

The overall event of data being transmitted is signaled to the Physical Layer by way of the variable
transmitting:

var transmitting: Boolean;

Before sending the first bit of a frame, the MAC sublayer sets transmitting to true, to inform the physical
layer that a stream of bits will be presented via the TransmitBit operation. After the last bit of the frame has
been presented, the MAC sublayer sets transmitting to false to indicate the end of the frame.

During reception, the contents of an incoming frame are retrieved from the Physical Layer by the MAC
sublayer via repeated use of the ReceiveBit operation:

function ReceiveBit: PhysicalBit;

Each invocation of ReceiveBit retrieves one new bit of the incoming frame from the Physical Layer. The
ReceiveBit operation is synchronous. Its duration is the entire reception of a single bit. Upon receiving a bit,
the MAC sublayer shall immediately request the next bit until all bits of the frame have been received. (See
99.2 for details.)

The overall event of data being received is signaled to the MAC sublayer by the variable receiveDataValid:

var receiveDataValid: Boolean;

When the Physical Layer sets receiveDataValid to true, the MAC sublayer shall immediately begin retriev-
ing the incoming bits by the ReceiveBit operation. When receiveDataValid subsequently becomes false, the
MAC sublayer can begin processing the received bits as a completed frame. If an invocation of ReceiveBit
is pending when receiveDataValid becomes false, ReceiveBit returns an undefined value, which should be
discarded by the MAC sublayer. (See 99.2 for details.)

The Physical Layer also provides the procedure Wait:

procedure Wait (bitTimes: integer);

This procedure waits for the specified number of bit times. This allows the MAC sublayer to measure time
intervals in units of the (physical-medium-dependent) bit time.

99.4 Specific implementations

99.4.1 Compatibility overview

To provide total compatibility at all levels of the standard, it is required that each network component imple-
menting the MAC sublayer procedure adheres rigidly to these specifications. The information provided in
99.4.2 provides design parameters for specific implementations of this access method. Variations from these
values result in a system implementation that violates the standard.

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.4.2 Allowable implementations

The following parameter values shall be used for their corresponding implementations:

NOTE 1—For 10 Mb/s implementations, the spacing between two successive packets, from start of idle at the end of the
first packet to start of preamble of the subsequent packet, can have a minimum value of 47 BT (bit times), at the AUI
receive line of the DTE. This interFrameGap shrinkage is caused by variable network delays, added preamble bits, and
clock skew.

NOTE 2—For 1BASE-5 implementations, see also DTE Deference Delay in 12.9.2.

NOTE 3—For 1 Gb/s implementations, the spacing between two packets, from the last bit of the FCS field of the first
packet to the first bit of the preamble of the second packet, can have a minimum value of 64 BT (bit times), as measured
at the GMII receive signals at the DTE. This interFrameGap shrinkage may be caused by variable network delays, added
preamble bits, and clock tolerances.

NOTE 4—For 10 Gb/s implementations, the spacing between two packets, from the last bit of the FCS field of the first
packet to the first bit of the preamble of the second packet, can have a minimum value of 40 BT (bit times), as measured
at the XGMII receive signals at the DTE. This interFrameGap shrinkage may be caused by variable network delays and
clock tolerances.

NOTE 5—For 10 Gb/s implementations, the value of ifsStretchRatio of 104 bits adapts the average data rate of the MAC
sublayer to SONET/SDH STS-192 data rate (with frame granularity), for WAN-compatible applications of this standard.

Parameters

Values

10 Mb/s
1BASE-5
100 Mb/s

1 Gb/s P2MP 10 Gb/s

interFrameGap 96 bits 96 bits 0 bits 96 bits

maxUntaggedFrameSize 1518 octets 1518 octets 1518 octets 1518 octets

minFrameSize 512 bits (64 octets) 512 bits (64 octets) 512 bits (64 octets) 512 bits (64 octets)

ifsStretchRatio not applicable not applicable not applicable 104 bits

Editors note: To be removed prior to final publication

This P2MP column in the parameter table is option #2 to making the IPG optional for P2MP.

WARNING

Any deviation from the above specified values may affect proper operation of the network.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
26 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

