Ethernet deployments towards Service providers

- In Campus: 10/100, GbE, 10GE
- In Metro: GbE, 10GE
 - 10Km, 40Km and beyond
- In Access: EFM
 - Up to 10Km
 - Ethernet over Copper
 - P-P GbE
 - Ethernet PON
Why we need OAM for Ethernet?

- “I want Low Cost Ethernet for my networks. But you do not have what Service Providers really need: OAM”: Mr. Roy Bynum, MCI Worldcom

OAM: Operation, Administration & Maintenance

- Low cost, service provider / customer demarcation, CPE
- Reduced network complexity
- Common protocol across LAN / MAN / Access
- While keeping the comparable level of OAM capability with existing transport / access networks (ADSL, T1/T3, OC-N, ATM etc.).
Operation Model: Head End to manage CPE

- CPE local stats/status is read/written by Head End
EFM OAM Objectives Agreed

• Support Far-end OAM in EFM, which includes:
 - Link Monitoring
 - Remote Failure Indication
 - Remote Loop back
Non-Goals

- Provisioning is excluded.
 - OAM at MAC/PHY level only.
 - Provisioning is for services.
Common OAM for all EFM PHYs

- What OAM (Link monitor, Failure Indication, Remote Loopback) means for each EFM PHY?
- Preferable to have a common OAM capability for all EFM PHYs.
Link Monitoring

Examples for each EFM-PHY

<table>
<thead>
<tr>
<th></th>
<th>P-P Copper</th>
<th>P-P GbE</th>
<th>EPON</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td></td>
<td></td>
<td>Tx/Rx PKT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRC Error</td>
</tr>
<tr>
<td>PCS / PMA</td>
<td>SNR (Inter Symbol Error)</td>
<td>8B10B Code Violation</td>
<td>8B10B Code Violation</td>
</tr>
<tr>
<td></td>
<td>Corrected Error</td>
<td></td>
<td>Upstream Access Control Monitor</td>
</tr>
<tr>
<td>PMD (Optical / Analog)</td>
<td>Tx Power</td>
<td>Loss of Signal (Rx Power)</td>
<td>Loss of Signal (Tx/RX Power)</td>
</tr>
<tr>
<td></td>
<td>AGC gain (Rx)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IEEE802.3 EFM SG
July 2001
Remote Defect Indication
Examples for each EFM-PHY

<table>
<thead>
<tr>
<th></th>
<th>Copper</th>
<th>P-P GbE</th>
<th>EPON</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td></td>
<td>MAC Control PKT option</td>
<td></td>
</tr>
<tr>
<td>PCS / PMA</td>
<td></td>
<td>Local/Remote Fault Indication</td>
<td>Dying Gasp</td>
</tr>
<tr>
<td>PMD (Optical / Analog)</td>
<td></td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>
Remote Loop Back

- Reduce / Eliminate “truck rolls”

- Loop back is important for
 - Failure Isolation
 - Remote problem resolution

- Per subscriber unit
OAM for EFM: Summary

• OAM is mandatory requirement for Ethernet in the First Mile
• OAM operations
 - Link Monitoring at MAC/PHY/PMD
 - Failure Indication at MAC/PHY
 - Remote Loop-back at MAC/PHY
 - EPON needs Upstream Access Control Monitoring
 - Failure Isolation by combination of these operations
• OAM Mechanism will be built in PHY and/or MAC layer
 - New attributes to be added to 802.3 Clause 30