FEC in EPON Technical Proposal

Ariel Maislos, Passave
Bob Gaglianello, Lucent
Larry Rennie, NSC
Lior Khermosh, Passave
Ryan Hirth, Terawave

Proposal

ㅁ FEC Line coding

- Location of FEC in Ethernet stack

ㄱ Frame synchronization algorithm and state machines

- Analysis:
- Mean Time to False Packet Acceptance
- Start \& Stop Miss Detect

FEC Compatibility Matrix

Basic Principles of Operation

\square Keep line rate
\square Maintaining the atomic frame structure

- Parity check bytes added at the end of the frame

ㄱ FEC is coded before the $8 \mathrm{~B} / 10 \mathrm{~B}$ code
\Downarrow
\square Legacy devices observe a normal Ethernet frame

- False_Carrier_detect mode of PCS Rx when parity bytes received (RX_ER is asserted)

Encoding

\square Parity check bytes added at the end of the packet
\square All of the packet is encoded including preamble, address and FCS
\square Shortened last frame - virtual zero padding

- Idles not protected

Frame Markers

\square Special start and stop symbols added
\square Symbols are immune to high noise

- Symbols are actually sequences detectable with a correlator
$\square 60$ bit long for noise immunity

Frame
FCS PARITY
STOP

Protection Sequence Selection

\square Sequence is long enough to be detected with very high probability

- Scan the input symbol stream for a match with the S_FEC bit sequence and say you have sync when the match has less than d/2 errors
\square Sequence can flow through non-FEC PCS transparently
- Suggested codes
- /S_fec/ - start of packet - /D21.2/R/K28.5/D16.2/S/
- /T_fec/ - end of packet - /T/R/K28.5/D16.2/T/R/

FEC Rate Adaptation

\square Additional idles inserted in FEC packet reception instead of additional data
\square In transmission rate adaptation can be achieved in open loop, IPG stretching, adapting MAC rate

- like in the 802.3ae
- There is a known ratio between the packet size to the additional parity bytes per packet

FEC Layering in Ethernet

PCS State Machine

\square RX and TX state machines remains the same as legacy 1000BASEX PCS

Data Flow for FEC Sub-layer - Tx

Packet Tx FEC Encoding

Data Flow for FEC Sub-layer - Rx

RX. FEC Sub-layer

\square RX. FEC Sublayer delays data for PCS by:

- one maximal packet (1512) + parity $(7 * 16)+3$ FEC frames ($3^{*} 255$) $=2389$ bytes
- Delay is constant
$-\mathrm{RX}_{\text {t-delay }}<9: 0>$ is valid at time \mathbf{t} for the PCS
- Enhancing Sync in FEC sub-layer

FEC layer Tx state machine

FEC layer Rx State Machine

FEC decoding

FEC Sync State Machine

Probability for Lock Errors

] Acquiring is done after detecting 3 commas The probability for error in acquisition is reduce from 3e-11 to 3e-3
\square Probability for de-acquiring - After 4 sequential bad words (with hysteretic) - reduced from the order of $(1 e-11)^{\wedge} 4$ to (1e-3)^4 - one in every 2hours.
\square Increasing the state machine to 7 reduces the probability to the order of (1e-3)^7 - one in every 250000 years

Mean Time to False Packet Acceptance

\square Bit error probability before FEC is $\mathrm{Pe}=1 \mathrm{e}-4$
\square Bit error probability After FEC is Pcu=1e-12
\square The probability for an FCS error in Ethernet:

$$
\mathrm{P}_{\mathrm{UD}}=\frac{1500}{255} \cdot \frac{\mathrm{P}_{\mathrm{CU}}}{10} \cdot\left(\frac{1}{2}\right)^{32}=1.4 \mathrm{e}-22
$$

\square Most code-words are not 17 bytes distant The number of 17 bytes neighbors:

$$
\mathrm{R}_{17}=\frac{\binom{17}{9} \cdot \mathrm{~A}_{17}}{\binom{255}{9} \cdot(256)^{9}}=\frac{\binom{17}{9} \cdot\left[\binom{255}{17} \cdot 255\right]}{\binom{255}{9} \cdot(256)^{9}} \approx 6 \cdot \mathrm{le}-8
$$

Mean Time to False Packet Acceptance - Cont'

- Total probability of undetected errors for Ethernet with FEC - 1e-29
\square For 1GE this means an error in 4 e 16 years

Miss detect in Start \& Stop Markers

\square Length of correlation sequence - 6 bytes that are 60 bits - detected with bit correlators

- Probability of miss-detect from IDLE pattern
- The minimal distance of a sequence from an IDLE pattern is 15 bits -

$$
P_{c e}<\binom{15}{7} P_{b}^{7} \approx 1 e-24
$$

\square Probability of miss-detect from data pattern

- The nearest data sequence is 6 bits distant -

$$
P_{c e}<\frac{320}{\left(2^{8}\right)^{6}} \cdot\binom{6}{3} P_{b}^{3} \approx 2 e-23
$$

Conclusion

ㄱ FEC framing compatible with legacy Ethernet introduced

- Layering proposed below PCS with same 1000Base-X PCS
口 Frame format uses IPG for code words
$\square 60$ bit patterns used as markers
\square IPG Stretching for Rate Adaptation like in 802.3ae
- Low probability of error propagation shown

