IEEE 802.3 EPoC Study Group

Task Force Work Load and Diligence on Proposed Extra Effort

8 May 2012

Mark Laubach, Broadcom

John Dickinson, Bright House Networks
Eugene Dai, Cox Communications

Supporters

Rick Li, Cortina Systems

Marek Hajduczenia, ZTE

PAR, Criteria, and Objectives

- Excellent work so far by a large number of SG participants
 - Getting clarity on a number of issues for this SG
 - Focused on SG output
- However becoming clear, that the Task Force work load being asked on two major work items, exceeding previous consensus:
 - Asking for additional operating mode: half-duplex
 - Asking for a PHY specification per media type,
 - Also, open ended, one, two....?
- Is the extra work too much for the Task Force?
- What additional information is needed to validate adding extra work to the Task Force?

Review: CFI Scope set with 802.3

"Proposed scope of study:

A new PHY for operating the EPON protocol over Coaxial Distribution Networks ("EPoC")

- Up to 10 Gbps downstream / Up to 10 Gbps upstream
 - Support symmetric and asymmetric full-duplex deployments
- Focused project
- No substantive changes to other EPON sublayers
 - Anticipate additional OAM messages for configuration, monitoring, etc.
- Scope: existing operating mode "full-duplex" and one PHY

First Objective Passed in Hawaii

"Specify a PHY to support subscriber access networks using the EPON protocol and operating on point-to-multipoint RF distribution plants comprised of all-coaxial cable or hybrid fiber/coaxial media.

- Y: 45 N: 0 A: 0"

 Consensus: "A PHY" and "all-coaxial cable or hybrid fiber/coaxial media".

Work Load Impact

- Anticipating approximately 2.5 years to approved standard
 - U.S. cable industry has stated they would deploy now if available
 - We have a lot of work to accomplish for just one PHY
- However, SG is receiving proposals for extra work in the Criteria consensus effort and other contributions
 - An additional operating mode for EPON: half-duplex, unknown impact
 - Additional PHYs per media types: unspecified differences and work
- There has been no impact study on Task Force Effort
 - Likely at least 2x-3x original effort
 - What is impact on draft standard schedule?

Work Load Impact

- Keeping to "best" TF schedule should have priority
- Variety of options for maintaining "best" schedule:
 - Stick to existing consensus of one operating mode and one PHY
 - It <u>is</u> the current scope of work
 - Do extra work after priority work is complete
 - Go back to 802.3 and ask for consideration of extra effort
 - But don't stall FDD/One-PHY
 - If extra effort approved, merge or do after priority work is complete
 - Ignore now and let Task Force sort it out
 - Least preferable: can significantly burden TF initial productivity
 - Lack of "impact aware" consensus
 - Just say "no" to the extra effort
 - Stick to priority work only

Impact? How much extra work?

- What is the impact of the extra work?
 - Insufficient visibility and validation in contributions
- TDD has been "hiding under the coat tails" of FDD
- It is time to hear the details and validation for why the extra work should be added to the Task Force Load
- One quick approach is to see if TDD can stand on its own for EPoC
 - Then SG can determine how to proceed going forward

Clause 4 and 56 on "Half-Duplex"

- Clause 4, Section 4.1.1 mentions Half Duplex
 - "In half duplex mode, stations contend for the use of the physical medium, using the CSMA/CD algorithms specified."
 - Original CD (baseband voltage threshold exceeded) hard in an RF environment
- Clause 56, Section 56.1 Overview
 - "An important characteristic of EFM is that only full duplex links are supported"
- TDD is not CSMA/CD and has no precedence for EFM
 - Asking for half-duplex EPON MAC
 - Asking for half-duplex link
- This doesn't mean EPOC using TDD over Coax can't be done in IEEE 802.3
 - We really need to hear more substantiating market validation and technical diligence on impact to EPON

Why add extra work for the Task Force?

- Respecting TDD is essential
 - Improve understanding of essentials and impact for that approach
 - Does the SG want the TF to take on the extra work?
 - Is it even possible to merge with FDD/single PHY work?
 - If yes, then when at same time or after first priority is completed?
- Should (re) examine TDD versus the CFI
 - How would the CFI be answered differently if TDD were included?
- Should examine TDD versus 5 Criteria stand-alone
 - E.g. no full-duplex, answer if TDD were the only operating mode
 - Also maintain compatibility with CFI commitments
 - Will create better understand of TDD needs and issues

Market Motivation for CFI: EFM over Fiber

- The original motivation for the EPoC CFI came from desire of cable operators already using EPON over fiber to extend their same EPON to over Coax
 - At the time: no present solutions
- TDD seems to be spawning from existing EoC approaches wanting to move from LAN to EFM access networks
 - HomePlug AV
 - MOCA
 - HINOC
 - Proprietary approaches in progress for EPON + EoC
 - At the time: several solutions, two specification organizations
- Validation question:
 - Has the market window passed for an IEEE EPoC TDD solution?

Original intent: No OLT Hardware Changes

- One aspect of the approach used in the CFI is to permit EPON chipset vendors to use existing OLT PON chipsets
 - i.e., changes predicted to be limited to software only
- Vendor's observation: premature to add TDD to Study Group output without a sufficiently detailed impact study
 - Current TDD proposals imply hardware changes
 - Vendors need to determine exact impact on <u>their</u> hardware
 - Then, an "impact aware" consensus process

Back to CFI Content Comparison

- In the section on Market Potential
 - Probably should bring back that study slide on EoC in China
 - Given existing deployments, what is IEEE TDD EoC potential?
 - In China
 - R.O.W.
- In the section on High Level Concept
 - Need to see straw architectural assumptions for a TDD mode
 - What layers are affected?
 - What is impact on EPON systems for the existing services?:
 - 1588v2 and cellular backhaul
 - MEF services for business
 - Triple-play for residential
 - Haven't heard how TDD impacts these achieving these goals:
 - Concerns about impact on delay, delay variation, and relative cost and therefore subsequent burden on Task Force to overcome

Back to CFI Content Comparison

- In the section on High Level Concept
 - TDD only works in passive spectrum on cable networks
 - Does the plant have to be "touched" in any way to make TDD work better?
 - If so, is that work unique to TDD or can be made to work for FDD?
 - » e.g. for high-split TDD and FDD, both require a diplexer
 - How does TDD accomplish:
 - Flexible provisioning
 - "work[ing] around existing services"
 - "The EPoC PHY would need to be flexible and permit reprovisioning to make use of more RF spectrum as it is made available by the cable operator"

Summary on CFI Content Comparison

- TDD may have different answers to the goals and requirements expressed in the CFI
 - Need to bring out clearly
- Then see if FDD and TDD can even share the same goals

5 Criteria as a Stand Alone

- During the course of 5 Criteria and objectives development,
 TDD interests have proposed:
 - A different MAC operating mode from FDD
 - A different PHY for a "passive" cable media type
- No contributions on MAC impact or extra PHY validation
 - What happens to delay, delay variation, etc.?
 - What are the specific differences that motivate an additional PHY?
- Perhaps asking for a TDD-only set of answers to the 5
 Criteria with supporting contributions is a fast approach?
 - Need sufficient detail and validation to support criteria items

Other questions on TDD impact to Cable and EPON

- TDD co-existence on cable plant with existing services:
 - What changes to the plant are required?
 - How does TDD meet future re-provisioning of services and spectrum?
- On existing OLT chips and systems?
- On existing EPON system performance with regards to delay, delay variation, packet bursts for meeting:
 - MEF scenarios and any limitations for business services
 - Triple-play services for residential
 - Any limits on upstream concatenated burst lengths?

Other questions on TDD impact to Cable and EPON

- What impact does additional delay and wider transmit channel in TDD have on packet memory, relative cost, and power in the ONU/CNU?
- What is the solution and relative cost impact for maintaining 1588 v2 (and other) clock synchronization?
- What are relative cost impact on CNU receivers over FDD approach in "long reach" passive networks when close neighbors are at high output level?
- What is impact on discovery and auto-negotiation?

Other questions on TDD impact to Cable and EPON

- What is the impact on the scheduler for just TDD mode?
- If a manufacturer were to create a "transparent repeater" product, (e.g. "CMC" on Mark's "Slide 19"s)
 - How does OLT manage FDD and TDD scheduling on same PON?
 - If a TDD "span" were added to PON, how are existing PON services impacted? Are there any interaction issues?
 - Any limitation to multiple TDD "spans" on same PON? E.g. multiple
 CMC's on same PON, each with "community" of TDD CNU's
- How does TDD scale and adjust with different and evolving symmetric and asymmetric service load requirements?
 - Any additive relative cost on CNU transmitter over FDD approach?

Closing

- This contribution is about increasing the understanding of proposed additions to the Study Group scope
 - Being very clear about impacting Task Force work load is needed
 - Time until completion of draft standard is crucial
 - Clarity in SG likely improves clarity of PAR/Criteria/Objectives when being reviewed, less questions and delays
- This contribution raises the question of: do the current proposals asking for an additional MAC operating mode as well as an additional PHY create a distinct identity for the TDD approach?
 - If yes, then a new "EPON using TDD over Coax" CFI is likely prudent
- The feasibility of EPON MAC operate with TDD has not been proven
 - No detailed technical analysis of any kind
 - No prototype of any kind
 - Therefore, it is too immature to start any standard work
- Regardless, increasing understanding EPON system impact and performance of the TDD approach is necessary
 - Too much is unclear
 - Passing to TF to sort this out will burden and complicate their effort

Thank You