EPoC RF Media Types

Jorge Salinger, Comcast jorge salinger@cable.comcast.com

EPoC Study Group 802.3 Plenary meeting, May 2012

Presentation Objective

- Discuss why support for two media is needed
 - Review EPoC deployment options and operational differences (references to Use Case presentation in 'mallette_01_0312.pdf' from Hawaii meeting)
 - Differentiate active and passive coax media types
- Separate presentation from Dave Barr, Steve Shellhammer, Rajeev Jain, and Juan Montojo will discuss the technical differences between the two media types

EPoC Deployment Options

- 1. OCU located at the headend
 - EPoC signals traverse the <u>entire HFC network</u> (i.e., analog laser/node, amplifiers and line extenders, and taps)
 - Use Case #1 from presentation in Hawaii
- 2. OCU located at the node
 - EPoC signals traverse the <u>entire coax portion of the HFC</u> <u>network</u> (i.e., amplifiers and taps, but not analog laser)
 - Use Cases #2 and #5 from presentation in Hawaii
- 3. OCU located at the amplifier
 - EPoC signals traverse <u>only the passive portion of the coax</u> <u>plant (i.e., only taps, not analog laser or amplifiers)</u>
 - Use Cases #3 and #4 from presentation in Hawaii

Option 1. OCU located at the headend

- All active plant components must pass RF signals for EPoC, from the headend optics to the last tap.
- Spectrum available for EPoC limited to what nodes, amplifiers and taps can pass
 - Simplest, but most spectrum in use already or soon will be
 - Freeing or creating spectrum will be complex and costly

Option 2. OCU located at the node

- All active coax plant components must pass RF signals for EPoC, from the node to the last tap (i.e., no headend lasers).
- Spectrum available for EPoC limited to what amplifiers and taps can pass (i.e., spectrum not limited by headend lasers)
 - Same spectrum limitations as Option #1, but more capacity
 - Can use baseband lasers from headend to coax plant

Option 3. OCU located at amplifier

- Only passive coax plant components must pass RF signals for EPoC, from the amp to the tap where customer is located
 - All other portions of the plant remain unchanged
- Significantly more spectrum available for EPoC
 - ~700 MHz in 1 GHz plant and ~1 GHz in 750 MHz plant
 - Does NOT require N+0; Option 3. is an overlay network

Compare EPON to Option 3.

- Option 3. requires OCU and tap faceplate swaps, but less fiber
- Option 3. should be easier and less expensive to deploy

Two Operating Modes

- Options 1. and 2. are for active HFC plant
 - RF EPoC signals must traverse node and amplifiers
 - Capacity limited to spectrum allocated for US/DS
 - Expansion of US/DS capacity requires physical changes
- Option 3. is for passive coax plant
 - RF EPoC signals only traverse taps
 - RF EPoC signals can be outside operating range of HFC
 - Much more spectrum available: 700 MHz to 1 GHz
 - US and DS capacity
 - Can implement dynamic US:DS allocation

Two Media Types

- Active Media (FDD EPoC System)
 - RF EPoC signals below 750, 860 or 1,000 MHz
 - RF EPoC signals coexist with current services
 - US and DS operating regions are fixed by diplex filter and maximum capacities are pre-allocated
- Passive Media (FDD or TDD EPoC System)
 - RF EPoC signals below or above ~1 GHz
 - Below 1 GHz can use existing taps
 - Practical range up to ~1.7 GHz with passive taps
 - US and DS operating region can be fixed for FDD, but could also be changed on demand or assigned dynamically in TDD system operation

Conclusion

- Support for two media types highly beneficial
 - FDD EPoC system in active plant will be easier to deploy and lower cost, but is limited in spectrum
 - TDD EPoC system in passive overlay will require more fiber and OCUs, but it is more efficient than EPON and it offers significantly more spectrum
- Separate presentation from Dave Barr, Steve Shellhammer, Rajeev Jain, and Juan Montojo will discuss the technical differences between the two media types