
Interpretation Number: 1-11/01 - Item 1
Topic: Definition of CEXT and CEXT_Err symbols
Relevant Clauses: Figure 40-9
Classification: Unambiguous

Interpretation Request

Referring to Fig.40-9, state - 'CARRIER EXTENSION’ transmits either CEXT
symbols if TXD<7:0> = 0x0F or CEXT_Err symbols if TXD<7:0> != 0x0F.

However if we look at Table 40-1 and Table 40-2 Bit-to-symbol mapping (even
and odd subsets) there is no mapping for CEXT_Err.

Further in Clause 40.3.3.1, variable CEXT_Err is defined as code-group
generated in Idle mode to denote carrier extension with error indication, as
specified in Clause 40.3.1.3.

So the question is: what symbols does one transmit on the 4-twisted pairs to
denote CEXT_Err ?

Are they from Idles/CEXT portion of table 40-1 dependent on Sd(n)[1:0] as per
Clause 40.3.1.3.4 ?

Interpretation for IEEE std 802.3-2000

In subclause 40.3.1.3.5 the standard states that 'the nine-bit word Sdn[8:0] is
mapped to a quartet of quinary symbols according to Table 40-1 and Table 40-2'.
Hence to determine the symbols to be sent the value of the nine-bit word
Sdn[8:0] has to be first determined.

Subclause 40.3.1.3.4 ‘Generation of bits Sdn[8:0]’ specifies how the nine-bit word
Sdn[8:0] is calculated. Using this information, the value of the nine-bit word
Sdn[8:0] in the ‘CARRIER EXTENSION’ state of Figure 40-9 'PCS Transmit state
diagram' can be derived as follows (Note equations are numbered in the order
they appear in the subclause).

Sdn[8] is derived using the first 4 equations that appear in subclause 40.3.1.3.4
as follows:

[eqn 1] csn[1] = 0
[eqn 2] csn[2] = 0
[eqn 3] csn[0] = csn-1[2] = 0

Hence:

[eqn 4] Sdn[8] = csn[0] = 0

Sdn[7:0] is derived using the remaining equations in subclause 40.3.1.3.4 as
follows:

[eqn 5] csresetn = (tx_enablen-2) and (not tx_enablen)
= 0 and 1
= 0

Since Sdn[7:4] is derived from Scn[7:4], the value of Scn[7:4] must be derived first
from subclause 40.3.1.3.3 as follows:

[eqn 1] Sdn[7:4] = 0000 (tx_enablen2= 0)

Returning to the equations in subclause 40.3.1.3.4, based on csresetn = 0,
tx_enablen-2 = 0 and the value Scn[7:4] derived above:

[eqn 6] Sdn[7] = Scn[7] = 0
[eqn 7] Sdn[6] = Scn[7] = 0
[eqn 8] Sdn[5:4] = Scn[5:4] = 00

Sdn[3] = Scn[3]
[eqn 9] Sdn[2] = Scn[2] ^ (loc_rcvr_status = OK)
[eqn 12] Sdn[1] = Scn[1] ^ cext_errn
[eqn 13] Sdn[0] = Scn[0] ^ cextn

Where:

[eqn 10] cextn = (tx_errorn and TXDn[7:0] = 0x0F)
[eqn 11] cext_errn = (tx_errorn and TXDn[7:0] ≠ 0x0F)

Hence it can be seen that in the ‘CARRIER EXTENSION’ state of Figure 40-9:

During Carrier Extension (tx_errorn and TXDn[7:0] = 0x0F)

Sdn[8:4] = 00000
Sdn[3] = Scn[3]
Sdn[2] = Scn[2] ^ (loc_rcvr_status = OK)
Sdn[1] = Scn[1]
Sdn[0] = Scn[0] ^ 1

During Carrier Extension Error (tx_errorn and TXDn[7:0] ≠ 0x0F)

Sdn[8:4] = 00000
Sdn[3] = Scn[3]
Sdn[2] = Scn[2] ^ (loc_rcvr_status = OK)
Sdn[1] = Scn[1] ^ 1
Sdn[0] = Scn[0]

Further it can be seen that during the Idle state:

Sdn[8:4] = 00000
Sdn[3] = Scn[3]
Sdn[2] = Scn[2] ^ (loc_rcvr_status = OK)
Sdn[1] = Scn[1]
Sdn[0] = Scn[0]

In summary, in both the 'SEND IDLE' and 'CARRIER EXTENSION' states of
Figure 40-9, the value of the bits Sdn[8:4] is 00000 and the value of the bits
Sdn[3:0] are derived from bits Scn[3:0]. Bit Sdn[3] is equal to the bit Scn[3], and
bits Sdn[2:0] are equal to either the true or inverse of the bits Scn[2:0] on a bit by
bit basis. The selection between the true and inverse of the Scn[2:0] bits is
determined by the value of loc_rcvr_status for Scn[2], cext_errn for Scn[1] and
cextn for Scn[0]. The Scn[3:0] bits are derived from the Side Stream Scrambler
described in subclause 40.3.1.3.1.

Since Sdn[8:4] is 00000, the quinary symbols in Table 40-1 labelled with the
condition 'Idle/Carrier Extension' will be sent in both the 'SEND IDLE' and
'CARRIER EXTENSION' states. The sequence in which these symbols are sent
will be determined by the Sdn[3:0] bits which are derived from the Scn[3:0] bits. A
different sequence of these 'Idle/Carrier Extension' symbols will be sent
dependent on cextn, cext_errn and loc_rcvr_status since these control the
inversion of the Scn[2:0] bits used in the generation of the Sdn[2:0] bits.

Therefore, specifically for CEXT_Err, as can be seen above, the standard
describes that the quinary symbols sent are the symbols in Table 40-1 marked
with the condition 'Idle/Carrier Extension'. The sequence in which these symbols
are sent will be controlled by the Scn[3:0] bits. The sequence will be unique for
CEXT_Err since this is the only time when Scn[1] is inverted and Scn[0] is true in
the generation of Sdn[3:0].

A maintenance change has been raised to make this more specific. This change
request is available at the
URL: http://www.ieee802.org/3/maint/requests/maint_1083.pdf.

http://www.ieee802.org/3/maint/requests/maint_1083.pdf

Interpretation Number: 1-11/01 - Item 2
Topic: Definition of CEXT symbols and IDLE symbols
Relevant Clauses: Figure 40-10a
Classification: Unambiguous

Interpretation Request

Referring to Fig.40-10a (part a), state - 'EXTENDING' goes to either state
'CARRIER EXTENSION' if Rx(n-1) is CEXT or state 'CARRIER EXTENSION with
ERROR' if Rx(n-1) is IDLE

However if we look at Table 40-1 Bit-to-symbol mapping (even subsets) the
mapping for IDLE and CEXT is the same.

Further, as per Clause 40.3.1.3.4, for tx-path :

Sd(n)[1] = Sc(n)[1] ^ cext_err(n) (if tx_enable(n-2) = 0)

Sd(n)[0] = Sc(n)[0] ^ cext(n) (if tx_enable(n-2) = 0)

and so for Rx-path, the answer seems to be :

cext(n) = Sd(n)[0] ^ Sc(n)[0] (if RX_DV = 0)

and

cext_err(n) = Sd(n)[1] ^ Sc(n)[1] (if RX_DV = 0)

and

Idle = others (while RX_DV = 0)

Is this assumption correct ?

So the question is: In the Rx-path how does one differentiate between
Idles/CEXT/CEXT_Err in table 40-1?

Seems to be dependent on Sd(n)[1:0] ?

Interpretation for IEEE std 802.3-2000

As the standard states in 40.3.1.4 PCS Receive, ‘To achieve correct operation,
PCS Receive uses the knowledge of the encoding rules that are employed in the
idle mode.’ Further, as seen above in the response to Item 1, the sequence of
symbols sent during IDLE, Carrier Extension and Carrier Extension Error is
controlled by the current Scn value.

Hence to extract IDLE/CEXT/CEXT_Err from Rxn (which maps to Sdn),
knowledge of the current scrambler state (via Scn) is required.

Interpretation Number: 1-11/01 - Item 3
Topic: Scrambler generator polynomial
Relevant Clauses: 40.6.1.1.2
Classification: Defect

Interpretation Request

Lastly, there seems to be a typo in Clause 40.6.1.1.2 - Test Modes of Std 802.3,
2000 Edition

The scrambler generator polynomial should be :

gs1 = 1 + x^9 + x^11 instead of : s1 = 1 + x^9 + x^1

Interpretation for IEEE std 802.3-2000

This represents a conflict within the standard. A change request has been
generated to correct this which is available at the URL:
http://www.ieee802.org/3/maint/requests/maint_1084.pdf

http://www.ieee802.org/3/maint/requests/maint_1084.pdf

