
current state is $W X$, as was shown in the previous paragraph. If A_CNT is 1 originally initialized with $W X$, then the next state would be $W(W X+16)$. By 2 not sampling the pseudo-random generator after every clock cycle, not 3 every possible value output by the pseudo-random generator will be 4 observed. 5

The plots on show simulations of what the ||A|| spacing would actually 7 look like when the pseudo-random generator is sampled in this manner. The 8 first plot shows the distribution of $||A||$ spacing for the $X^{\wedge} 7+X^{\wedge} 6+1 \quad 9$ polynomial, and the second plot uses the $X^{\wedge} 7+X^{\wedge} 3+1$ polynomial. The $x-10$ axis shows the number of columns between consecutive ||A|| columns. The 11 y-axis shows the number of times that $||A||$ spacing existed. For each 12 simulation, 4096 trials were done. It is clear that after several 13 thousand trials, there are many spacing values that have not been used, 14 thus making it impossible to have a uniformly distributed spacing. 15
$x \mathrm{xx} \mathrm{xx} \quad 23$

The standard currently defines that the A spacing be uniform randomly

```
|
```

 8
 10
 1111
 |http://www.ieee802.org/3/maint/requests/revision_history.html\#REQ1118 15
1614
48.2.4.2 Idle (||I||) 1
Change the item d) of subclause 48.2.4.2 as follows: 32
d) Each $\|\mathrm{A}\|$ is sent after r non- $\|\mathrm{A}\|$ columns where r is a temiform-randomly distributed number between4
16 and 31, inclusive. The corresponding minimum spacing of 16 non- $\|\mathrm{A}\|$ columns between two $\|\mathrm{A}\|$ 6
columns provides a theoretical 85-bit deskew capability. 7

