
Feb 4, 1998
1

IEEE Link Aggregation Study Group

Load Balancing
Algorithms

Why we don’t need to specify the load
balancing algorithm in the Standard.

Paul Congdon
Sundar Subramaniam
Hewlett-Packard Company

Feb 4, 1998
2IEEE Link Aggregation Study Group

Load Balancing Algorithms

• Considerations
• Some Algorithms
• Example of a bad algorithm
• The Receive Algorithm
• Mixing Algorithms and Topologies
• What Needs to be Specified
• Conclusions

Feb 4, 1998
3IEEE Link Aggregation Study Group

Considerations

• Frame ordering must be preserved for a particular SA-
DA pair (of same priority). NOTE: This can be
controlled by the sender.

• A single algorithm for receiving frames on the
aggregation possible - all frames come from a “logical”
port. NOTE: Multiple receive algorithms may require
negotiation.

• Frame duplication can not occur.

• Fragmentation and re-assembly across the aggregation
does not scale without a hardware assist.

• Link aggregations with mixed speed and MAC type can
be made to work, but with additional complexity.

Feb 4, 1998
4IEEE Link Aggregation Study Group

Some Algorithms for Sending

Load balancing algorithms must define the function
F(x1, x2, x3,….) = physical port

Note : Result must always be the same for a given “flow”

Some possibilities are:
• F(SA)
• F(DA)
• F(SA, DA)
• F(SA, DA, SrcPort)
• F(Level3, Level4 information)
• Conditional functions

e.g. if Multicast traffic use F(DA), else use F(SA, DA).

Higher Layers SA DA

} }}

Source Port
Speed Vector

Physical
Port

Feb 4, 1998
5IEEE Link Aggregation Study Group

An Example of a Bad Algorithm

• F(FDB(DA)) = physical port
• Use the switch’s forwarding database to distribute

addresses across the aggregation as they are learned.
NOTE: in this case the FDB still references physical ports.

• What happens when FDB(DA) fails? - Use a pre-defined
flood link

•

Mac X Mac Y

Example
1. Switch 1 has learned X, but not Y. Switch 2 knows both
2. X sends to Y, and Switch 1 uses pre-defined flood link
3. Y sends back to X via known path in Switch
4. Switch 2 learns Y, applies algorithm and assigns Y to link
5. Next frame from X to Y travels over link 3 (potentially
passing previously flooded frames

Switch 1 Switch 2

Feb 4, 1998
6IEEE Link Aggregation Study Group

A Single Receive Algorithm

• All frames are received on the aggregated link
are handled as though they came from a single
port for:
– Switch Learning

– Higher Layer Functions
• Order is not “made worse” by the receiver, and

“flows” remain in order from the sender’s
perspective. Physical Ports Aggregated Port

Feb 4, 1998
7IEEE Link Aggregation Study Group

Mixing Sender Algorithms

Many-to-Many

Many-to-one

Many-to-one (direct)

Switch1

Switch1 Switch2

Server

Server

Switch2

Switch

Clients
Switch1 - F(SA) or F(DA)
Switch2 - F(SA) or F(DA)

Switch1 - F(SA)
Switch2 - F(DA)

Switch - F(SA)
Server - F(DA)

Some combinations are more optimal - But order is preserved!

One-to-one (direct)

ServerServer

One-to-one
(indirect)

Switch1 ServerSwitch2Server

Server - F(Layer3, Layer4)
Server - F(Layer3, Layer4)

Server - F(Layer3, Layer4)
Switch1 - F(SA,DA)
Switch2 - F(SA,DA)
Server - F(Layer3, Layer4)

Many Possibilities

Feb 4, 1998
8IEEE Link Aggregation Study Group

Don’t Specify the Algorithm

Why we shouldn’t standardize the algorithm
• Inter-operability is not an issue - devices implementing

different algorithms can inter-operate.
• Would take a lot of time to decide which is the best -

delays the standard.
• Optimal algorithm is often topology specific.
• Leave room for vendors to enhance and optimize.

Only is basic requirements

’Frame order must be preserved within a “flow”
’Basic flow is an SA/DA pair, however...
’Higher layer flows can supersede (at least at the originator?)

Requirements

Feb 4, 1998
9IEEE Link Aggregation Study Group

Conclusions

• Load Balancing Algorithms should be
deterministic,
at least for a particular “flow”.

• There are many choices for good algorithms -
Some are better for some topologies.

• Mixing good algorithms always works, given a
common receive algorithm!

• We don’t need to standardize the algorithm, only
its requirements.

