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• What Needs to be Specified
• Conclusions



Feb 4, 1998
3IEEE Link Aggregation Study Group

Considerations

• Frame ordering must be preserved for a particular SA-
DA pair (of same priority).  NOTE: This can be 
controlled by the sender.

• A single algorithm for receiving frames on the 
aggregation possible - all frames come from a “logical” 
port.  NOTE: Multiple receive algorithms may require 
negotiation.

• Frame duplication can not occur.

• Fragmentation and re-assembly across the aggregation 
does not scale without a hardware assist.

• Link aggregations with mixed speed and MAC type can 
be made to work, but with additional complexity.
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Some Algorithms for Sending

Load balancing algorithms must define the function
F(x1, x2, x3,….) = physical port

Note : Result must always be the same for a given “flow”

Some possibilities are:
• F(SA)
• F(DA)
• F(SA, DA)
• F(SA, DA, SrcPort) 
• F(Level3, Level4 information)
• Conditional functions 

e.g. if Multicast traffic use F(DA),  else use F(SA, DA).

Higher Layers      SA      DA

} }}

Source Port
Speed Vector

Physical
Port
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An Example of a Bad Algorithm

• F(FDB(DA)) = physical port
• Use the switch’s forwarding database to distribute 

addresses across the aggregation as they are learned.  
NOTE: in this case the FDB still references physical ports.

• What happens when FDB(DA) fails?  - Use a pre-defined 
flood link

•

Mac X Mac Y

Example
1. Switch 1 has learned X, but not Y.  Switch 2 knows both
2. X sends to Y, and Switch 1 uses pre-defined flood link 
3. Y sends back to X via known path in Switch 
4. Switch 2 learns Y, applies algorithm and assigns Y to link
5. Next frame from X to Y travels over link 3 (potentially 
passing   previously flooded frames

Switch 1 Switch 2
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A Single Receive Algorithm

• All frames are received on the aggregated link 
are handled as though they came from a single 
port for:
– Switch Learning

– Higher Layer Functions
• Order is not “made worse” by the receiver, and 

“flows” remain in order from the sender’s 
perspective. Physical Ports Aggregated Port
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Mixing Sender Algorithms

Many-to-Many

Many-to-one

Many-to-one  (direct)

Switch1

Switch1 Switch2

Server

Server

Switch2

Switch

Clients
Switch1  - F(SA) or F(DA)
Switch2  - F(SA) or F(DA)

Switch1 - F(SA)
Switch2 - F(DA)

Switch - F(SA)
Server - F(DA)

Some combinations are more optimal - But order is preserved!

One-to-one (direct)

ServerServer

One-to-one 
(indirect)

Switch1 ServerSwitch2Server

Server - F(Layer3, Layer4)
Server - F(Layer3, Layer4)

Server - F(Layer3, Layer4)
Switch1 - F(SA,DA)
Switch2 - F(SA,DA)
Server - F(Layer3, Layer4)

Many Possibilities
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Don’t Specify the Algorithm

Why we shouldn’t standardize the algorithm
• Inter-operability is not an issue - devices implementing 

different algorithms can inter-operate.
• Would take a lot of time to decide which is the best - 

delays the standard.
• Optimal algorithm is often topology specific.
• Leave room for vendors to enhance and optimize.

Only is basic requirements

’Frame order must be preserved within a “flow”
’Basic flow is an SA/DA pair, however...
’Higher layer flows can supersede (at least at the originator?)

Requirements
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Conclusions

• Load Balancing Algorithms should be 
deterministic, 
at least for a particular “flow”.

• There are many choices for good algorithms - 
Some are better for some topologies.

• Mixing good algorithms always works, given a 
common receive algorithm!

• We don’t need to standardize the algorithm, only 
its requirements.


