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Outline

! Introduction
! Wireless Channel Models

! Path Loss Model
! RMS Delay Spread Model
! K-Factor Model
! Doppler Spectrum
! Multiple Cluster Model

! Conclusion
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Wireless Channel

! Propagation
! Reflections, diffusion, absorption

! Antennas
! Single-pol, dual-pol, directional, omni

! Mobility/stationarity

! Common Path Loss Channel models
! Hata, COST-231, Walfish-Ikegami
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Channel Has Many Dimensions

BTS Antenna Height

Mobile Antenna Height

Wind speed/TrafficRange
Interference
(co-channel)

Antenna Separation
Terrain/Foliage

Polarization



5January 2003

Suburban Path Loss Model

A model presented in [1] can be used. It is based on 
extensive experimental data collected by AT&T Wireless 
Services in 95 macrocell across US. It covers the following:
- 3 different terrain categories: hilly, moderate and flat terrain
- Low and high base station antenna heights :  10 - 80  m
- Extended to higher frequencies and receiver antenna 

heights

[1]  V. Erceg et. al, “An empirically based path loss model for wireless channels in suburban 
environments,” IEEE J. Select Areas Commun., vol. 17, no. 7, July 1999, pp. 1205-1211.
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Path Loss Model: Cont’

Slope and Fixed Intercept Model:

PL = A + 10 γ log10 (d/do) + s;

Intercept:         A = 20 log10 (4 πdo / λ)

Path Loss Exponent:    γ = (a – b hb + c / hb) + x σ ;   hb:10 - 80m

Shadow Fading Standard Deviation:    σ = µσ + z σσ

Frequency Correction Factor: Cf =  6 log10 (f / 1900)

Height Correction Factor:       Ch =  - 10.7 log10(hr /2);  hr: 2 - 8m
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RMS Delay Spread Model

A delay spread model was proposed in [3] based on a large body of 
published reports. The model was developed for rural, suburban, urban, and 
mountainous environments. The model is of the following form:

trms = T1 de y

Where trms is the rms delay spread, d is the distance in km, T1 is the median 
value of trms at d = 1 km, e is an exponent that lies between 0.5-1.0, and y is 
a lognormal variate. The model parameters and their values can be found in 
Table III of [3].

[3] L.J. Greenstein, V. Erceg, Y.S. Yeh, and M.V. Clark, “A new path-gain/delay-spread 
propagation model for digital Cellular Channels,” IEEE Trans. On Vehicular Technology, vol. 
46, no. 2, May 1997.
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Model For ττττrms

τrms = T1 rε y,    where

r = base-to-user distance
ε = 0.5 - 1.0
T1 = median τrms at  r = 1 km

ln y is a zero-mean unit –variance random variable with 
std. dev. σ between 2 and 6 dB.
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K-Factor Model

In [6,7], for fixed wireless systems, the K-factor 
distribution was found to be lognormal, with the median 
as a simple function of season, antenna height, antenna
beamwidth, and distance.

K = Fs Fh Fb Ko d γ u

[6] L.J. Greenstein, S. Ghassemzadeh, V.Erceg, and D.G. Michelson, “Ricean K-
factors in narrowband fixed wireless channels: Theory, experiments, and statistical 
models,” WPMC’99 Conference Proceedings, Amsterdam, September 1999. 
[7] D.S. Baum, V. Erceg et.al., “Measurements and characterization of broadband 
MIMO fixed wireless channels at 2.5 GHz”, Proceedings of ICPWC'2000, Hyderabad, 
2000.
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K-Factor Model: Cont’

Fs    is the seasonal factor = 1 in summer and 2.5 in winter
Fh  is the receiving antenna height factor = (h/3) 0.46 ; h in m
Fb is the antenna beamwidth factor = (b/17) -0.62 ; b in deg.
d is the distance in km 
γ is the exponent  =  - 0.5
Ko is the 1 km intercept = 10 dB 
u    is the zero-mean lognormal variate with a 8.0 dB   standard  

deviation over the cell area.
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K-Factor vs. Distance  for Suburban Environments 
(Simulation, Fixed Scenario)
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K-factor vs. Distance 
for Mobile Channels
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Doppler Spectrum for Mobile and 
Stationary users

f f

a) b)

Mobile Stationary



15January 2003

Doppler Power Spectrum for 
Stationary Users

Rounded Spectrum with fD~ 0.1Hz- 2Hz
(at 2.4 GHz)
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Cross-Pol. Discrimination (XPD) vs. 
Distance
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Cluster Modeling Approach
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Indoor and Outdoor Channel Parameters

< 10o      BTS
10o – 40o MS

20o – 40oCluster Angular 
Spread

0.2 – 5 µµµµs20 – 250 nsRMS delay 
spread

3.5 – 52 – 3.5Path loss 
exponent

Outdoor
Macrocell

Indoor
Picocell
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Cluster Model: Cont’

! For multiple antennas, antenna correlation can 
be determined using: 

" Power Azimuth Spectrum (PAS) cluster shape 
(Laplacian, Gaussian, or uniform)

" Cluster Azimuth Spread (AS), i.e. root second 
central moment of PAS

" Receive and transmit antenna geometry and 
spacing (uniform linear array (ULA), circular, 
rectangular, etc., array)

" Mean Angle of Arrival (AoA) of each cluster
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Discussion and Conclusions

For multi-cell MBWA deployments:

! K = 0 (Rayleigh fading) should be assumed for robust 
system design 

! Excess delay spread values vary from 0 - 20 µs 

! Doppler: hundreds of Hz, depending on mobile speed 
and carrier frequency

! Diversity combining can be used to dramatically improve 
system coverage/reliability


