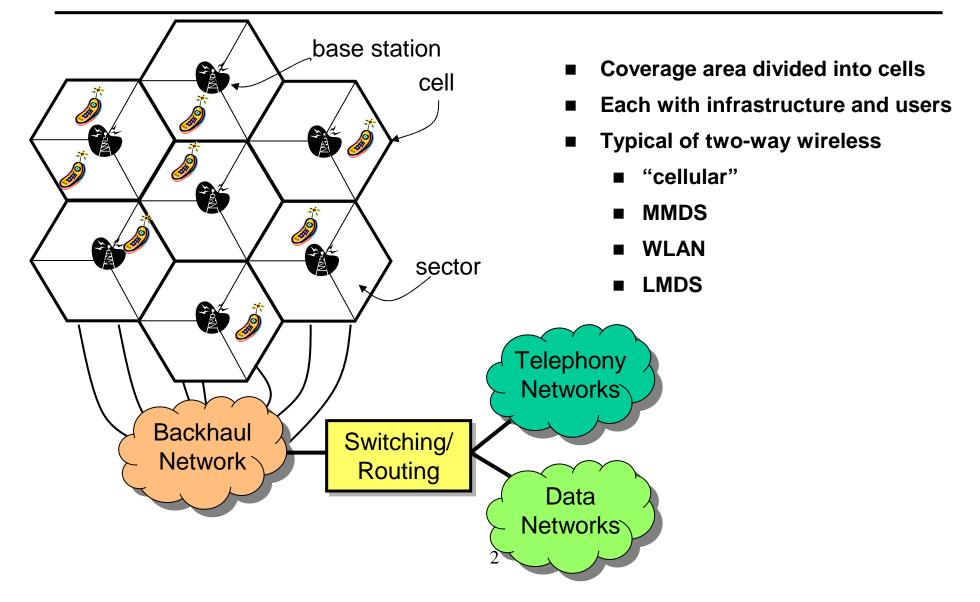
Project	IEEE 802 Executive Committee Study Group on Mobile Broadband Wireless Access < <u>http://grouper.ieee.org/groups/802/mbwa</u> >		
Title	Adaptive Antennas for MBWA		
Date Submitted	2002-09-03		
Source(s)	Marc Goldburg ArrayComm, Inc. 2480 North 1st Street, Suite 200 San Jose, CA 95134Voice: 408.428.9080 		
Re:	MBWA ECSG Call for Contributions		
Abstract	MBWA systems will be faced with limited spectrum availability at operating frequencies below 3 GHz, and with challenging link conditions arising from the combined requirements for mobility support, broadband data rates, and indoor penetration. Adaptive antennas are a potentially valuable component technology for this application; they provide active interference mitigation, fading mitigation and array gain over single conventional antenna systems. This presentation provides an overview of adaptive antenna technology as well as related spectral efficiency considerations.		
Purpose	Tutorial on principles of adaptive antenna technology.		
Notice	This document has been prepared to assist IEEE 802 MBWA ECSG. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802 MBWA ECSG.		
Patent Policy	The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual < <u>http://standards.ieee.org/guides/opman/sect6.html#6.3</u> > and in <i>Understanding</i> <i>Patent Issues During IEEE Standards Development</i> < <u>http://standards.ieee.org/board/pat/guide.html</u> >.		

Adaptive Antennas for MBWA


IEEE 802 MBWA SG

September 2002 Meeting

Marc Goldburg ArrayComm, Inc. marcg@arraycomm.com

Cellular Technology

Motivation

Mobile broadband services

- limited spectrum availability, need for high spectral efficiency
- mobile channel, broadband esp. sensitive to link impairments
- economics must permit consumer pricing

Adaptive antenna technology addresses requirements

- interference management leads to spectral efficiency
- gain, interference and fading mitigation improve channel
- >110,000 deployments establish readiness and benefits

Outline

- Spectral efficiency
- Adaptive antenna fundamentals

Spectral Efficiency Defined

Information delivered per unit of spectrum

Measured in bits/second/Hertz/cell, includes effects of

- multiple access method
- modulation methods
- channel organization
- ♦ resource reuse (code, timeslot, carrier, ...)

"Per-Cell" is critical

- primary spectral efficiency limitation generally self-interference
- isolated base station results not representative of real-world

Why Is Spectral Efficiency Important?

Directly affects an operator's cost structure

For given service and grade of service, determines

- required amount of spectrum (CapEx)
- required number of base stations (CapEx, OpEx)
- required number of sites and associated site maintenance (OpEx)
- and, ultimately, consumer pricing and affordability

Quick calculation (capacity limited system)

offered load (bits/s/km²)

number of cells/km² =

available spectrum (Hz) x spectral efficiency (bits/s/Hz/cell)

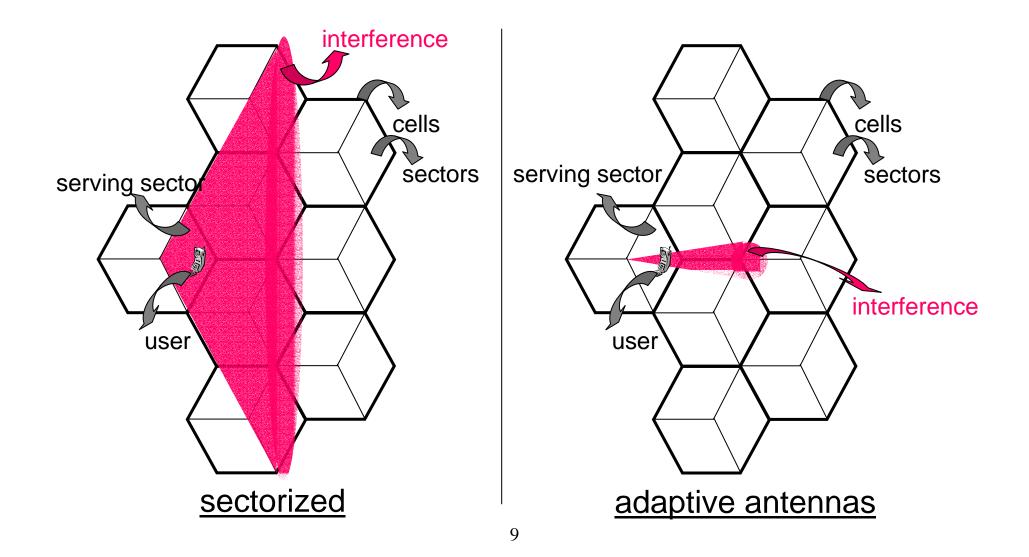
Designing For Spectral Efficiency

Spectral/Temporal tools

- multiple access method and data compression
 - optimize efficiency based on traffic characteristics
- modulation, channel coding, equalization
 - optimize efficiency based on link quality

Spatial tools (all to minimize interference)

- cellularization
 - mitigate co-channel interference by separating co-channel users
- sectorization
 - mitigate co-channel interference through static directivity
- power control
 - use minimum power necessary for successful communications


Min-Max Approach to Efficiency

- What's the greatest inefficiency in current designs?
- Answer:

energy transmitted to convey information energy received

Not completely attributable to propagation loss ...

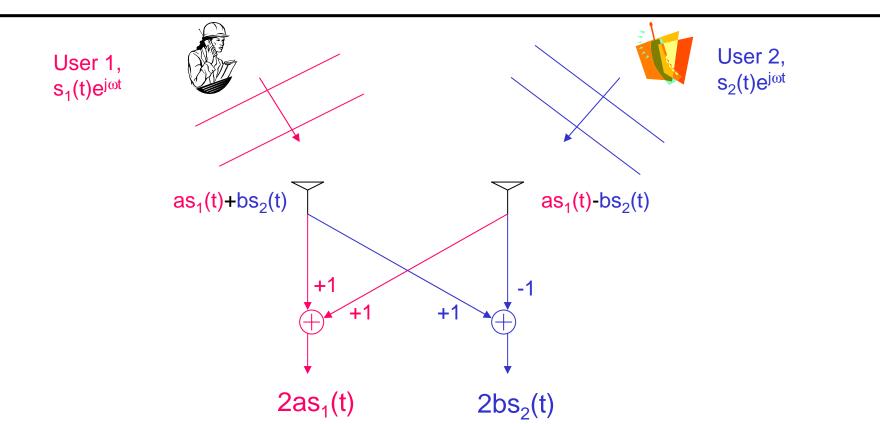
Self-Interference and Capacity

Outline

Spectral efficiency

Adaptive antenna fundamentals

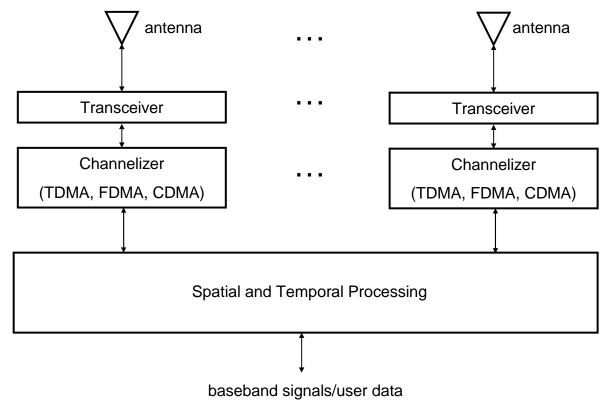
Adaptive Antennas Defined


Systems comprising

- multiple antenna elements (antenna arrays)
- coherent processing
- processing strategies that adapt to environment

Providing

- gain and interference mitigation
- improved signal quality and spectral efficiency
- improved coexistence behavior


Adaptive Antenna Concept

- Users' signals arrive with different relative phases and amplitudes
- Processing provides gain and interference mitigation

Protocol Independence

Fundamental concepts applicable to all access and modulation methods

Basic Uplink Gain Calculation

Signal s, M antennas, M receivers with i.i.d. noises n_i

$$\frac{\text{received signal}}{\text{noise}} = \frac{s + \dots + s}{n_1 + \dots + n_M}$$

therefore, Uplink SNR =
$$\frac{(Ms)^2}{M\sigma^2}$$
 = M $\frac{s^2}{\sigma^2}$

= M x single antenna SNR

- Adaptive antennas improve uplink SNR by factor of M
- M=10, 10x SNR improvement, examples
 - double data rate if single antenna SNR is 10 dB
 - reduce required subscriber transmit power by 10 dB
 - increase range by 93% with R^{3.5} loss

Basic Downlink Gain Calculation

Similar to uplink calculation,

- except dominant noise is due to (single) receiver at user terminal
- With same total radiated power P in both cases

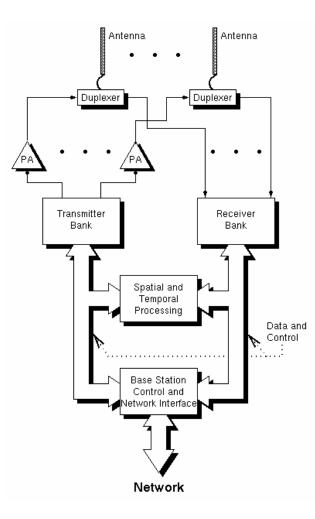
Received Power (Adaptive Antenna) Received Power (Single Antenna)

$$\frac{(\sqrt{P/M} s + \dots + \sqrt{P/M} s)^2}{(\sqrt{P}s)^2} = M$$

Again, factor of M or 10log₁₀M dB

■ M=10, 10 dB gain examples

◆ 10 elements with 1 W PA's, same EIRP as single element with 100 W PA


=

90% reduction in total radiated power for same EIRP

Interference Mitigation

- Directive gain results in passive interference mitigation
- Active interference mitigation independent of and in addition (dB) to gain
- Gain and interference mitigation performance are actually statistical quantities
 - Theoretical gain performance closely approached (within 1 dB) in practice
 - Theoretical interference mitigation, ∞ , harder to achieve
 - limited by calibration, environment, number of interferers
 - active mitigation in excess of 20 dB can be reliably achieved for significant interferers

Base Station Architecture

Generic Features

- antenna array
- phase coherent transceiver chains
- automated adaptive techniques to combine (distribute) energy from (to) transceiver chains
- natural application for wideband radios

Architectural Variants

- conventional downlink processing
- analog spatial processing
- narrowband radios
- masthead electronics
- appliqué to conventional system

Antenna Arrays

Wide variety of geometries and element types

- arrangements of off-the-shelf single elements
- custom arrays

Array size

- vertical extent determined by element gain/pattern as usual
- horizontal extent, typically 3-5 lambda

■ 2 GHz, eight 10 dBi element array is 0.5 x 0.75 m

- ♦ small!
- conformal arrays for aesthetics

Comments

- Fundamental concept is coherent processing
- Generally applicable to all air interfaces
- Parallel, independent processing on all traffic resources
- Many important issues that are not addressed here
 - estimation/prediction of radio environment (will comment later)
 - processing requirements & architectures (easily > 1Gbps array data rate)
 - performance validation
 - equipment calibration
 - effects of air interface specifics (will comment later)
 - broadcast channel support
 - reliability benefits of redundant radio chains
 - intrinsic diversity of an array (fading immunity)
 - multipath processing

Adaptive Antenna Benefits

Processing Gain	Operational Significance	
Selective Uplink Gain	Increased Range & Coverage Increased Data Rates Reduced System – Wide Uplink Noise Improved Uplink Multipath Immunity	
Uplink Interference Mitigation	Improved Signal Quality Maintained Quality with Tightened Reuse	
Selective Downlink Gain	Increased Range & Coverage Increased Data Rates Reduced System–Wide Downlink Interference Improved Co–existence Behavior Reduced Downlink Multipath	
Downlink Interference Mitigation	Maintained Quality with Tightened Reuse	

Actual level of benefits depends on implementation details

Adaptive Antenna Performance

Primary determinants

- environmental complexity, nonstationary channels
- air interface support for adaptive antennas ("hooks")
- duplexing: frequency-division or time-division (FDD vs. TDD)
 - issue is correlation of uplink and downlink propagation environments

Capacity increases in operational systems

Application	Capacity Increase	Deployments
FWA, TDD, hooks	20x	1996-present
Low Mobility PHS, TDD, no hooks	9x	1996-present
High Mobility AMPS & GSM (900, 1800, 1900), FDD, no hooks	2-6 x	1993-present

Summary

Spectral efficiency critical to MBWA

- limited spectrum availability and high \$/MHz-pop likely
- economics and end-user pricing linked to spectral efficiency

Robust links critical to MBWA

- broadband mobile services require high SINR
- diversity is key tool for combatting fading

AA's provide robustness, spectral efficiency

- proven in more than 110,000 deployments today
- highest benefits with TDD and tight protocol integration