

Network Vault Applications

Qualitrol Distribution Monitoring

Emilio Morales (emorales@qualitrolcorp.com)

Hakim Dulac (hdulac@qualitrolcorp.com)

Basic Underground Vault

What's Underground?

Why Monitor?!

- There is a compelling need to:
 - Increase safety to both public and utility personnel
 - Reduce scheduled maintenance with actual *predictive* failures=CBM
 - Minimize potential costs/maximize asset ROI
 - Increase "monitoring" = ability to trend for protection
 - Communities don't tolerate safety issues nor tolerate service disruptions / Media & political pressure
 - Common comments- "If a transformer fails, I hope it fails quietly"

Typical Vault monitoring parameters

- Oil Level
 - Normally we can Retrofit what is already on the transformer
- Oil Temperature
 - Normally we can Retrofit what is already on the transformer
- Sump Pump
- Level in Vault
 - One or two (ex. 24' from bottom and 6' below electronics)
- Ambient temperature
- Hydrogen

6

- Monitor Transformer Oil Conditions in Real-Time
 - I. Pressure
 - II. Level
 - III. Temperature
 - IV. Hydrogen
- Trend Data for Analysis
 - I. Behavior when overloaded
 - II. Oil Leaks
 - III. Transformer Life Expectancy
 - IV. Signs of Imminent Failure

Online Hydrogen DGA Monitoring

- Why Hydrogen?
 - I. Produced in most types of faults
 - II. Elevated Hydrogen levels provide indication of fault conditions
 - III. Multi-gas sensors are expensive and aren't designed for vault applications
- Hydrogen DGA Sensor
 - I. Sensor one sample every 2 minutes

Relative quantities of dissolved fault gases generated by incipient faults

Dissolved fault gases	Corona	Overheating		Arcing
		Insulation	Oil	Arcing
Hydrogen (H2)	High	Low	Low	High
Carbon monoxide (CO)		High		
Methane (CH4)	Low	Traces	Medium	Low
Ethane (C2H6)	Traces		Medium	Low
Ethylene (C2H4)			High	Low
Acetylene (C2H2)			Low	Medium

Hydrogen is the accepted indicative key fault gas that evolves in most types of faults.

DGA 250 H2 with custom Pressure Sensor-Submersible

- Sterile Oil Sample for Lab
- Comms
 Conn[•]s.

Pressure 4-20mA (+) Return 4-20mA (+) Hydrogen 4-20mA (+) Hydrogen 4-20mA (+) DC Ground (-) DC Supply (+) RS-485, Ground RS-485, TXD-RS-485, TXD-R

Single Gas DGA Offering

Hydrogen DGA Sensor

Gas or Oil Configurations

Installation example

15 Modular approach

- The new approach has a standard card per transformer
- They have different QTMS chassis depending on the potential of transformer in the vault.
- They can add card later

- - Houses up to 14 modules
 - Generally used for advanced CBM transformer monitoring:
 - Traditional monitoring / LTC / Cooling
 - Bushing Monitoring
 - Dissolved Gas Analysis (DGA)
 - Partial Discharge (PD)
 - Fiber Optic Temperature

