Thread Links Date Links
Thread Prev Thread Next Thread Index Date Prev Date Next Date Index

Re: Possible Spam: Re: re motion 50 (Just to you...)



Ulrich et al,

On 09/26/2013 05:21 AM, Ulrich Kulisch wrote:
If this email is not spam, click here to submit the signatures to FortiGuard - AntiSpam Service. <http://nospammer.net/SubmitSpam/submitspam.php?id=I3RKBzJ3XzxyVAJfeUl.%0AUA__&sig=e3g2y5lyCe5oIzFgaiVlc3l4NC12MTPUAFdFHFAKSgYODxpfFVhWGhxKVwUJRAgUCxF%0AXTRgfUBsFDFAeHkwGHRxWV0obDloQVVNEFhBJDB8eVVlJF0JGBg1OVAIeCAoXVBpdS1tWHhMaQkc%0AFHkQRGBYWVUBbUlwaG1dQAh4IDBYXEUBJBRxXEQpCRQlHVgkYHR0ZXx5eRFI*dx8BCXoMFUQrdXM%0A1cGcrO3NyPCJ8Ni5LSAUfRggCTWgjMW5qJWVxeXg0MTMcfhUBTwsZBlcMEhFWX1kaWEAXAGNaBR4%0ALABUMeDQsdDEzdGgjMWxhUhIGVxNdWFhUVwFoIzFuaiVlcXl4NDMBRkRaBUJFBERODAVXHVBZWVh%0ASGgURHhIBUAkYChtcLHYxMXRoIzFsaiVFHBAcDhlEAnFMXWIFQlkVV0FLSAxsAVBfBxxGQ0IEQBF%0AxeXg2LHYxMnRoI5YEHlEVS1ZXQ1sBH0AXAUZfGANDDBIYFVFeH1JSGkZAXgFFRBcFEBtYSVhSVRl%0AXSlVRGlAfCxURWktbXFYVG1ZDCQdACwVUF1IBFFhUWQ8OVh4LUwwFGAxdQxhQX1kLTF8fHkQLBVQ%0ARU0IfRVYHRUdUDgtRAFwKFF1IExxAHAdUFw0HVV4mLVZZTylYV0k7Ym4vK3E6Iik7ZGQvYmxGWBI%0ACXFMUXFceDDQsdjMzdGgjMWxqOAgQEBRAQ0xEXwYBQFlCAVAJGAobXGwdWEdaDUdEbGolZ3F5eDQ%0AsdjElAQRRWA8CCw4EFRFHTx5xWB0cDVQIHyVlcXt4NCx2MTN0ektFGBofSl4OD0MCHVhHWg1HRGx%0AqJWdxeXg0LHYxGxwcV0FWRQoSBg5WWU0CWR0fAVcfCQ5!
QShgYFlkeWRQEMQNWXQUZRg1xeXgwLHY%0AxM3RoIylsaiVncXlqtTitZubFyoI6d.XfMzXN6AUsdjE3dGgjMWxqJX1xeXg1LHYb.gw0FWYD6Gq%0A8ZtELmroUeYw_>

Bill,

.
.
.

But let us assume that the gravitational constant appears as a datum in a computation perhaps in a matrix multiplication. If you need a guaranteed answer you would read it into the computer as an interval where the bounds differ perhaps in the fifth digit. So you have to compute a dot product with this interval in one component. You would compute the minima and the maxima of the products of the vector components and finally you have to accumulate all the minima and all the maxima. Let us assume that this accumulation requires computing the sum

10²⁰⁰ + 23456 -10²⁰⁰. (1)

If your computer provides an EDP you get the correct answer 23456 and if the EDP is supported by hardware you get it very fast.

If your computer does not provide an EDP the average user will accumulate (1) in conventional floating-point arithmetic and he gets the wrong answer 0.



However, you will get the nearest floating point number to the
correct result, e.g., you would get 23456 in an IEEE double
type, if you have a correctly rounded dot product. P-1788 has
already decided a correctly rounded dot product will be included.

Baker

--

---------------------------------------------------------------
R. Baker Kearfott,    rbk@xxxxxxxxxxxxx   (337) 482-5346 (fax)
(337) 482-5270 (work)                     (337) 993-1827 (home)
URL: http://interval.louisiana.edu/kearfott.html
Department of Mathematics, University of Louisiana at Lafayette
(Room 217 Maxim D. Doucet Hall, 1403 Johnston Street)
Box 4-1010, Lafayette, LA 70504-1010, USA
---------------------------------------------------------------